IAVPGEVA, an octapeptide derived from soybean 11S globulin hydrolysis, also known as SGP8, has exhibited regulatory effects on lipid metabolism, inflammation, and fibrosis in vitro. Studies using MCD and HFD-induced nonalcoholic steatohepatitis (NASH) models in mice show that SGP8 attenuates hepatic injury and metabolic disorders. Mechanistic studies suggest that SGP8 inhibits the JNK-c-Jun pathway in L02 cells and liver tissue under metabolic stress and targets DPP4 with DPP4 inhibitory activity.
View Article and Find Full Text PDFThe development of efficient non-noble metal catalysts for the dehydrogenation of hydrogen (H) storage materials is highly desirable to enable the global production and storage of H energy. In this study, Cu -(CoO) /TiO catalysts with a Cu-CoO interface supported on TiO are shown to exhibit high catalytic efficiency for ammonia borane (NHBH) hydrolysis to generate H. The best catalytic activity was observed for a catalyst with a Cu : Co molar ratio of 1 : 1.
View Article and Find Full Text PDFStrong metal-support interactions characteristic of the encapsulation of metal particles by oxide overlayers have been widely observed on large metal nanoparticles, but scarcely occur on small nanoclusters (<2 nm) for which the metal-support interactions remain elusive. Herein, we study the structural evolution of Pt nanoclusters (1.5 nm) supported on anatase TiO upon high-temperature H reduction.
View Article and Find Full Text PDFCreating synergetic metal-oxide interfaces is a promising strategy to promote the catalytic performance of heterogeneous catalysts. However, this strategy has been mainly applied to monometallic catalysts, while scarcely applied to alloy catalysts. In this work, we present a comprehensive study on the synergetic alloy-oxide interfaces in the bimetallic Pt-Co/AlO catalysts for CO oxidation.
View Article and Find Full Text PDFEmerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.
View Article and Find Full Text PDFArachidonic acid (AA) metabolic network generates a variety of products that mediate or modulate inflammatory reactions. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), isolated from (Wehrhahn) Grierson, was found as an inhibitor of 5-LOX and 15-LOX in vitro. When evaluated in collagen-induced arthritis (CIA) rats, however, lowdose of HOEC (1 mg/kg) showed better efficacy than that of high dose (10 mg/kg).
View Article and Find Full Text PDFIt was found that flavonoids could remarkably inhibit the chemiluminescence (CL) intensity of an off-line gold nanoparticle (AuNP)-catalyzed luminol-H O CL system. By contrast, flavonoids enhanced the CL intensity of an on-line AuNP-catalyzed luminol-H O CL system. In the off-line system, the AuNPs were prepared beforehand, whereas in the on-line system, AuNPs were produced by on-line mixing of luminol prepared in a buffer solution of NaHCO - Na CO and HAuCl with no need for the preliminary preparation of AuNPs.
View Article and Find Full Text PDFOxidative stress and neuroinflammation are highly relevant to the pathological processes of various neurodegenerative diseases including Alzheimer's disease (AD). (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a novel 5-lipoxygenase inhibitor, was isolated from the whole plant of Incarvillea mairei var granditlora (Wehrhahn) Grierson. In this study, we investigated the protective effect of HOEC on hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) -induced cytotoxicity and neuroinflammation in vitro and in vivo.
View Article and Find Full Text PDFHuman dihydroorotate dehydrogenase (hDHODH) is an attractive therapeutic target for the treatment of rheumatoid arthritis, transplant rejection and other autoimmune diseases. Based on the X-ray structure of hDHODH in complex with lead compound 7, a series of benzylidenehydrazinyl-substituted thiazole derivatives as potent inhibitors of hDHODH were designed and synthesized, of which 19 and 30 were the most potent with IC50 values in the double-digit nanomolar range. Moreover, compound 19 displayed significant anti-arthritic effects and favorable pharmacokinetic profiles in vivo.
View Article and Find Full Text PDFHuman dihydroorotate dehydrogenase (HsDHODH) is a flavin-dependent mitochondrial enzyme that has been certified as a potential therapeutic target for the treatment of rheumatoid arthritis and other autoimmune diseases. On the basis of lead compound 4, which was previously identified as potential HsDHODH inhibitor, a novel series of thiazole derivatives were designed and synthesized. The X-ray complex structures of the promising analogues 12 and 33 confirmed that these inhibitors bind at the putative ubiquinone binding tunnel and guided us to explore more potent inhibitors, such as compounds 44, 46, and 47 which showed double digit nanomolar activities of 26, 18, and 29 nM, respectively.
View Article and Find Full Text PDFIn this study, 20 new derivatives of caffeic acid esters were synthesized and their inhibitory activities against the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 macrophages were determined. Compounds 3l, 3r, 3s and 3t were found to decrease nitrite levels in a dose-dependent manner in LPS-induced cells and showed potent inhibitory activities against the NO production in RAW264.
View Article and Find Full Text PDFMany studies have shown that chronic inflammation occurs in the brain of patients with Alzheimer's disease (AD). It is well known that long-term administration of non-steroidal anti-inflammatory drugs (NSAIDs) can alleviate the cognitive decline of AD patient and elderly. Several inflammatory cytokines produced in the metabolism of arachidonic acid (AA) are closely related to inflammatory diseases.
View Article and Find Full Text PDF