Publications by authors named "Liuwang Zeng"

Background: Multiple studies have reported that stem cell therapy has beneficial effects in animal models of intracerebral hemorrhage (ICH). However, this finding remains inconclusive. This study was performed to systematically determine the effect size of stem cell therapy in ICH animal models by pooling and analyzing data from newly published studies.

View Article and Find Full Text PDF

Neurological disorders are a group of disorders with motor, sensory or cognitive damage, caused by dysfunction of the central or peripheral nervous system. Cyclin-dependent kinases 5 (Cdk5) is of vital significance for the development of the nervous system, including the migration and differentiation of neurons, the formation of synapses, and axon regeneration. However, when the nervous system is subject to pathological stimulation, aberrant activation of Cdk5 will induce abnormal phosphorylation of a variety of substrates, resulting in a cascade signaling pathway, and thus lead to pathological changes.

View Article and Find Full Text PDF

Stroke is one of the leading causes of death and disability in the world. However, the pathophysiological process of stroke is still not fully clarified. Mitochondria play an important role in promoting nerve survival and are an important drug target for the treatment of stroke.

View Article and Find Full Text PDF

Hepatic encephalopathy (HE) is a brain dysfunction associated with poor quality of life, increased morbidity and mortality. The pathogenesis of HE is still not fully clarified and effective therapeutic strategies are imperative. Among multiple factors that contribute to the pathophysiological process of HE, ammonia neurotoxicity is thought to be central in the pathogenesis of HE.

View Article and Find Full Text PDF

Background: Multiple preclinical studies have demonstrated that bone-marrow derived mesenchymal stromal (stem) cells [MSC(M)] positively influence the severity of sepsis symptoms and mortality in rodent models. However, this remains an inconclusive finding.

Objective: To review the effect of naïve MSC(M) in rodent models of sepsis.

View Article and Find Full Text PDF

The mechanism of Golgi apparatus (GA) stress responses mediated by GOLPH3 has been widely studied in ischemic stroke, and the neuroprotection effect of olfactory mucosa mesenchymal stem cells (OM-MSCs) against cerebral ischemia/reperfusion injury (IRI) has been preliminarily presented. However, the exact role of OM-MSCs in the GA stress response following cerebral IRI remains to be elucidated. In the present study, we used an oxygen-glucose deprivation/reoxygenation (OGD/R) model and reversible middle cerebral artery occlusion (MCAO) model to simulate cerebral IRI in vitro and in vivo.

View Article and Find Full Text PDF

Background: Microglia plays a vital role in neuroinflammation, contributing to the pathogenesis of intracerebral hemorrhage (ICH)-induced brain injury. Mesenchymal stem cells (MSCs) hold great potential for treating ICH. We previously revealed that MSCs ameliorate the microglial pyroptosis caused by an ischemic stroke.

View Article and Find Full Text PDF

Background: Intracerebral hemorrhage (ICH) is a major public health concern, and mesenchymal stem cells (MSCs) hold great potential for treating ICH. However, the quantity and quality of MSCs decline in the cerebral niche, limiting the potential efficacy of MSCs. Hypoxic preconditioning is suggested to enhance the survival of MSCs and augment the therapeutic efficacy of MSCs in ICH.

View Article and Find Full Text PDF

Cerebral ischemia-reperfusion induces mitochondrial fragmentation and dysfunction, which plays a critical role in the subsequent neuronal death and neurological impairment. Protection of mitochondria is an effective strategy to prevent neuronal damage after cerebral ischemia-reperfusion injury. USP30 is a deubiquitinating enzyme that localizes to the outer mitochondrial membrane.

View Article and Find Full Text PDF

The Golgi apparatus is known to underpin many important cellular homeostatic functions, including trafficking, sorting and modifications of proteins or lipids. These functions are dysregulated in neurodegenerative diseases, cancer, infectious diseases and cardiovascular diseases, and the number of disease‑related genes associated with Golgi apparatus is on the increase. Recently, many studies have suggested that the mutations in the genes encoding Golgi resident proteins can trigger the occurrence of diseases.

View Article and Find Full Text PDF

Melatonin is a potent antioxidant and anti-inflammatory agent that is showing promising results in acute brain injury. The aim of this study was to systematically evaluate the pre-clinical evidence on the effectiveness of melatonin in improving outcome after intracerebral hemorrhage (ICH). We searched mainstream databases from the inception to the end of June 2020.

View Article and Find Full Text PDF

Aims: Cyclin-dependent kinase 5 (CDK5) is a potential target for the treatment of cerebral ischemia. CDK5 is one of the upstream regulators for Dynamin-related protein 1 (Drp1) phosphorylation. This study intends to discuss whether CDK5 inhibition conferring neuroprotection in cerebral ischemia through regulating Drp1 phosphorylation.

View Article and Find Full Text PDF

Recanalization therapy by intravenous thrombolysis or endovascular therapy is critical for the treatment of cerebral infarction. However, the recanalization treatment will also exacerbate acute brain injury and even severely threatens human life due to the reperfusion injury. So far, the underlying mechanisms for cerebral ischaemia-reperfusion injury are poorly understood and effective therapeutic interventions are yet to be discovered.

View Article and Find Full Text PDF

The ubiquitin-proteasome pathway and autophagy-lysosome pathway are two major routes for clearance of aberrant cellular components to maintain protein homeostasis and normal cellular functions. Accumulating evidence shows that these two pathways are impaired during cerebral ischemia, which contributes to ischemic-induced neuronal necrosis and apoptosis. This review aims to critically discuss current knowledge and controversies on these two pathways in response to cerebral ischemic stress.

View Article and Find Full Text PDF

Ischemic stroke is a leading cause of morbidity and mortality worldwide. Thrombolytic therapy, the only established treatment to reduce the neurological deficits caused by ischemic stroke, is limited by time window and potential complications. Therefore, it is necessary to develop new therapeutic strategies to improve neuronal growth and neurological function following ischemic stroke.

View Article and Find Full Text PDF

The Golgi apparatus (GA) is a pivotal organelle, and its fragmentation is an essential process in the development of apoptosis. GA is a potential target in the treatment of cerebral ischemia-reperfusion injury. Histone deacetylase 6 (HDAC6) catalyzes the removal of functional acetyl groups from proteins and plays an important role in cell homeostasis.

View Article and Find Full Text PDF

Inflammation and apoptosis are two key factors contributing to secondary brain injury after intracerebral hemorrhage (ICH). In the present study, we explored the neuroprotective role of methylene blue (MB) in ICH rats and studied the potential mechanisms involved. Rats were subjected to local injection of collagenase IV in the striatum or sham surgery.

View Article and Find Full Text PDF

Ischemic stroke results in severe brain damage and remains one of the leading causes of death and disability worldwide. Effective neuroprotective therapies are needed to reduce brain damage resulting from ischemic stroke. Mitochondria are crucial for cellular energy production and homeostasis.

View Article and Find Full Text PDF

Despite great progresses in the treatment and prevention of ischemic stroke, it is still among the leading causes of death and serious long-term disability all over the world, indicating that innovative neural regenerative and neuroprotective agents are urgently needed for the development of therapeutic approaches with greater efficacy for ischemic stroke. More and more evidence suggests that a spectrum of epigenetic processes play an important role in the pathophysiology of cerebral ischemia. In the present review, we first discuss recent developments in epigenetic mechanisms, especially their roles in the pathophysiology of cerebral ischemia.

View Article and Find Full Text PDF

Cerebral ischemia-reperfusion injury plays an important role in the development of tissue injury after acute ischemic stroke. Finding effective neuroprotective agents has become a priority in the treatment of ischemic stroke. The Golgi apparatus (GA) is a pivotal organelle and its protection is an attractive target in the treatment of cerebral ischemia-reperfusion injury.

View Article and Find Full Text PDF

Purpose: To report an unusual case of idiopathic hypertrophic spinal pachymeningitis (IHSP) with a review of relevant literature and to discuss the etiology, clinical features, imaging, treatment and prognosis of IHSP.

Methods: The case of a 44-year-old woman is reported. MEDLINE was used to search relevant literatures written in English since 2004.

View Article and Find Full Text PDF

Haemorrhagic stroke is a severe stroke subtype with high rates of morbidity and mortality. Although this condition has been recognised for a long time, the progressing haemorrhagic stroke has not received adequate attention, and it accounts for an even worse clinical outcome than the nonprogressing types of haemorrhagic stroke. In this review article, we categorised the progressing haemorrhagic stroke into acute progressing haemorrhagic stroke, subacute haemorrhagic stroke, and chronic progressing haemorrhagic stroke.

View Article and Find Full Text PDF

Although the Golgi apparatus has been studied extensively for over 100 years, the complex structure-function relationships have yet to be elucidated. It is well known that the Golgi complex plays an important role in the transport, processing, sorting, and targeting of numerous proteins and lipids destined for secretion, plasma membrane, and lysosomes. Increasing evidence suggests that the Golgi apparatus is a sensor and common downstream effector of stress signals in cell death pathways.

View Article and Find Full Text PDF

Mitochondria play a central role in cellular metabolism, calcium homeostasis, redox signaling and cell fates. Mitochondrial homeostasis is tightly regulated, and mitochondrial dysfunction is frequently associated with severe human pathologies. Small heat shock proteins are molecular chaperones that play major roles in development, stress responses, and diseases, and have been envisioned as targets for therapy.

View Article and Find Full Text PDF