Publications by authors named "Liuting Shan"

Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed.

View Article and Find Full Text PDF

In the era of the Internet and the Internet of Things, display technology has evolved significantly toward full-scene display and realistic display. Incorporating "intelligence" into displays is a crucial technical approach to meet the demands of this development. Traditional display technology relies on distributed hardware systems to achieve intelligent displays but encounters challenges stemming from the physical separation of sensing, processing, and light-emitting modules.

View Article and Find Full Text PDF

Deep neural networks have revolutionized several domains, including autonomous driving, cancer detection, and drug design, and are the foundation for massive artificial intelligence models. However, hardware neural network reports still mainly focus on shallow networks (2 to 5 layers). Implementing deep neural networks in hardware is challenging due to the layer-by-layer structure, resulting in long training times, signal interference, and low accuracy due to gradient explosion/vanishing.

View Article and Find Full Text PDF

Realizing multi-modal information recognition tasks which can process external information efficiently and comprehensively is an urgent requirement in the field of artificial intelligence. However, it remains a challenge to achieve simple structure and high-performance multi-modal recognition demonstrations owing to the complex execution module and separation of memory processing based on the traditional complementary metal oxide semiconductor (CMOS) architecture. Here, we propose an efficient sensory memory processing system (SMPS), which can process sensory information and generate synapse-like and multi-wavelength light-emitting output, realizing diversified utilization of light in information processing and multi-modal information recognition.

View Article and Find Full Text PDF

Developing multifunctional artificial sensory systems is an important task for constructing future artificial neural networks. A system with multisignal output capability is highly required by the rising demand for high-throughput data processing in the Internet of Things (IoT) society. Here, a novel dual-output artificial tactile sensing (DOATS) system with parallel output of photoelectric signals was proposed.

View Article and Find Full Text PDF