Publications by authors named "Liusi Sheng"

This study employed a vacuum ultraviolet synchrotron radiation source and reflectron time-of-flight mass spectrometry (TOF-MS) to investigate the photoionization and dissociation of styrene. By analyzing the photoionization mass spectrum and efficiency curve alongside G3B3 theoretical calculations, we determined the ionization energy of the molecular ion, appearance energy of fragment ions, and relevant dissociation pathways. The major ion peaks observed in the photoionization mass spectra of styrene correspond to C H , C H and C H .

View Article and Find Full Text PDF

The photoionization and dissociative photoionization of toluene have been studied using synchrotron radiation vacuum ultraviolet light with photon energy in the range of 8.50-25.50 eV.

View Article and Find Full Text PDF

Purpose: To develop and test a three-dimensional (3D) deep learning model for predicting 3D voxel-wise dose distributions for intensity-modulated radiotherapy (IMRT).

Methods: A total of 122 postoperative rectal cancer cases treated by IMRT were considered in the study, of which 100 cases were randomly selected as the training-validating set and the remaining as the testing set. A 3D deep learning model named 3D U-Res-Net_B was constructed to predict 3D dose distributions.

View Article and Find Full Text PDF

Criegee intermediates have raised much attention in atmospheric chemistry because of their significance in ozonolysis mechanism. The simplest Criegee intermediate, CHOO, and its reactions with acrylic acid including cycloadditions and insertions as main entrance channels have been investigated at CCSD(T)/cc-pVTZ//M06-2X/6-31G(d,p) level. Temperature- and pressure-dependent kinetics were predicted by solving the time-dependent master equations based on Rice-Ramsperger-Kassel-Marcus theory using MESS program, with temperatures from 200 to 500 K and pressures from 0.

View Article and Find Full Text PDF

The isomerization and dissociation reactions of methyl decanoate (MD) radicals were theoretically investigated by using high-level theoretical calculations based on a two-layer ONIOM method, employing the QCISD(T)/CBS method for the high layer and the M06-2X/6-311++G(d,p) method for the low layer. Temperature- and pressure-dependent rate coefficients for the involved reactions were computed by using the transition state theory and the Rice-Ramsperger-Kassel-Marcus/Master-equation method. The structure-reactivity relationships were explored for the complicated multiple-well interconnected system of ten isomeric MD radicals.

View Article and Find Full Text PDF

The dissociative photoionization of CF3Cl was investigated using threshold photoelectron photoion coincidence (TPEPICO) imaging in the energy range of 12.30-18.50 eV.

View Article and Find Full Text PDF

Reactions between chlorine and unsaturated esters in gas phase are examined in a slow-flow reaction tube inside the laboratory-built photoionization mass spectrometer at the energy range of 8-11 eV. 248 nm laser radiation is used to initiate the reaction. Products are distinguished, CHOCl for addition, and CHO, CHOCl and CHOCl for abstraction.

View Article and Find Full Text PDF

The nanomaterials function as the substrate to trap analytes, absorb energy from the laser irradiation and transfer energy to the analytes to facilitate the laser desorption process. In this work, the signal intensity and reproducibility of analytes with nanomaterials as matrices were explored by laser desorption postionization mass spectrometry (LDPI-MS). Herein, the desorbed neutral species were further ionized by vacuum ultraviolet (VUV, 118 nm) and analyzed by mass spectrometer.

View Article and Find Full Text PDF

Water molecules, which serve as both hydrogen bond donors and acceptors, have been found to influence the conformational landscape of gas-phase phenyl-β-d-glucopyranoside. Herein, tetrahydrofurfuryl alcohol (THFA), a sugar-like molecule without chromophores (e.g.

View Article and Find Full Text PDF

The dissociative photoionization of vinyl chloride (CHCl) in the 11.0-14.2 eV photon energy range was investigated using threshold photoelectron photoion coincidence (TPEPICO) velocity map imaging.

View Article and Find Full Text PDF

Photoionization and dissociation of the 1-propanol dimer and subsequent fragmentations have been investigated by synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry and theoretical calculations. Besides the protonated monomer cation (C3H7OH)·H(+) (m/z = 61) and Cα-Cβ bond cleavage fragment CH2O·(C3H7OH)H(+) (m/z = 91), the measured mass spectrum at an incident photon energy of 13 eV suggests a new dissociation channel resulting in the formation of the (C3H7OH)·H(+)·(C2H5OH) (m/z = 107) fragment. The appearance energies of the fragments (C3H7OH)·H(+), CH2O·(C3H7OH)H(+) and (C3H7OH)·H(+)·(C2H5OH) are measured at 10.

View Article and Find Full Text PDF

In this work, photoionization and dissociation of cyclohexene have been studied by means of coupling a reflectron time-of-flight mass spectrometer with the tunable vacuum ultraviolet (VUV) synchrotron radiation. The adiabatic ionization energy of cyclohexene as well as the appearance energies of its fragment ions C6 H9 (+) , C6 H7 (+) , C5 H7 (+) , C5 H5 (+) , C4 H6 (+) , C4 H5 (+) , C3 H5 (+) and C3 H3 (+) were derived from the onset of the photoionization efficiency (PIE) curves. The optimized structures for the transition states and intermediates on the ground state potential energy surfaces related to photodissociation of cyclohexene were characterized at the ωB97X-D/6-31+g(d,p) level.

View Article and Find Full Text PDF

Dissociative photoionization of methyl bromide (CH3Br) in an excitation energy range of 10.45-16.90 eV has been investigated by using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging.

View Article and Find Full Text PDF

While methyl transfer is well known to occur in the enzyme- and metal-catalyzed reactions, the methyl transfer in the metal-free organic molecules induced by the photon ionization has been less concerned. Herein, vacuum ultraviolet single photon ionization and dissociation of ethanol dimer are investigated with synchrotron radiation photoionization mass spectroscopy and theoretical methods. Besides the protonated clusters cation (C2H5OH)⋅H(+) (m/z = 47) and the β-carbon-carbon bond cleavage fragment CH2O⋅(C2H5OH)H(+) (m/z = 77), the measured mass spectra revealed that a new fragment (C2H5OH)⋅(CH3)(+) (m/z = 61) appeared at the photon energy of 12.

View Article and Find Full Text PDF

In an atomically thin-film/dielectric-substrate heterostructure, the elemental physical properties of the atomically thin-film are influenced by the interaction between the thin-film and the substrate. In this article, utilizing monolayer MoS(2) on LaAlO(3) and SrTiO(3) substrates, as well as SiO2 and Gel-film as reference substrates similar to previously reported work [Nano Res, 2014, 7, 561], we systematically investigate the substrate effect on the photoluminescence of monolayer MoS(2). We observed significantly substrate-dependant photoluminescence of monolayer MoS(2), originating from substrate-to-film charge transfer.

View Article and Find Full Text PDF

In present report, we explored hyperconjugation effects on the site- and bond-selective dissociation processes of cationic ethanol conformers by the use of theoretical methods (including configuration optimizations, natural bond orbital (NBO) analysis, and density of states (DOS) calculations, etc.) and the tunable synchrotron vacuum ultraviolet (SVUV) photoionization mass spectrometry. The dissociative mechanism of ethanol cations, in which hyperconjugative interactions and charge-transfer processes were involved, was proposed.

View Article and Find Full Text PDF

We investigated the photoionization and dissociation photoionization of the β-pinene molecular using time-of-flight mass spectrometry with a tunable vacuum ultraviolet source in the region from 8.00eV to 15.50eV.

View Article and Find Full Text PDF

Site-selective ionization of ethanol dimer and the subsequent fragmentation were studied by synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry. With photoionization efficiency spectra measurements and theoretical calculations, the detailed mechanisms of the ionization-dissociation processes of ethanol dimer under VUV irradiation were explored. In 9.

View Article and Find Full Text PDF

Dissociation of internal energy selected CF4(+) ions in an excitation energy range of 15.40-19.60 eV has been investigated using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging.

View Article and Find Full Text PDF

In present study, photoionization and dissociation of acetic acid dimers have been studied with the synchrotron vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. Besides the intense signal corresponding to protonated cluster ions (CH(3)COOH)(n)·H(+), the feature related to the fragment ions (CH(3)COOH)H(+)·COO (105 amu) via β-carbon-carbon bond cleavage is observed. By scanning photoionization efficiency spectra, appearance energies of the fragments (CH(3)COOH)·H(+) and (CH(3)COOH)H(+)·COO are obtained.

View Article and Find Full Text PDF

Direct experimental evidence for dissociative photoionization of oxygen molecule via the (2)Σ(u)(-) ionic optical dark state is presented by an investigation using the method of threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. Besides vibrational progress of the B(2)Σ(g)(-) state, several weak vibrational bands of the (2)Σ(u)(-) ionic optical dark state are observed concomitantly in an excitation energy range of 20.2-21.

View Article and Find Full Text PDF

Isoprene is a significant source of atmospheric organic aerosol; however, the secondary organic aerosol (SOA) formation and involved chemical reaction pathways have remained to be elucidated. Recent works have shown that the photo-oxidation of isoprene leads to form SOA. In this study, the chemical composition of SOA from the OH-initiated photo-oxidation of isoprene, in the absence of seed aerosols, was investigated through the controlled laboratory chamber experiments.

View Article and Find Full Text PDF

Utilizing threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging, dissociation of state-selected CH(3)Cl(+) ions was investigated in the excitation energy range of 11.0-18.5 eV.

View Article and Find Full Text PDF