Publications by authors named "Liuquan Sun"

Recurrent events are common in medical practice or epidemiologic studies when each subject experiences a particular event repeatedly over time. In some long-term observations of recurrent events, a terminal event such as death may exist in recurrent event data. Meanwhile, some inspected subjects will withdraw from a study for some time for various reasons and then resume, which may happen more than once.

View Article and Find Full Text PDF

With the advent of massive survival data with a cure fraction, large-scale regression for analyzing the effects of risk factors on a general population has become an emerging challenge. This article proposes a new probability-weighted method for estimation and inference for semiparametric cure regression models. We develop a flexible formulation of the mixture cure model consisting of the model-free incidence and the latency assumed by the semiparametric proportional hazards model.

View Article and Find Full Text PDF

Recurrent event data, which represent the occurrence of repeated incidences, are common in observational studies. Furthermore, collecting possible spatial correlations in health and environmental data is likely to provide more information for risk prediction. This article proposes a comprehensive proportional intensity model considering spatial random effects for recurrent event data using a Bayesian approach.

View Article and Find Full Text PDF

Interval-censored failure time data frequently arise in various scientific studies where each subject experiences periodical examinations for the occurrence of the failure event of interest, and the failure time is only known to lie in a specific time interval. In addition, collected data may include multiple observed variables with a certain degree of correlation, leading to severe multicollinearity issues. This work proposes a factor-augmented transformation model to analyze interval-censored failure time data while reducing model dimensionality and avoiding multicollinearity elicited by multiple correlated covariates.

View Article and Find Full Text PDF

Quantile regression has become a widely used tool for analysing competing risk data. However, quantile regression for competing risk data with a continuous mark is still scarce. The mark variable is an extension of cause of failure in a classical competing risk model where cause of failure is replaced by a continuous mark only observed at uncensored failure times.

View Article and Find Full Text PDF

Human microbiome research has gained increasing importance due to its critical roles in comprehending human health and disease. Within the realm of microbiome research, the data generated often involves operational taxonomic unit counts, which can frequently present challenges such as over-dispersion and zero-inflation. To address dispersion-related concerns, the generalized Poisson model offers a flexible solution, effectively handling data characterized by over-dispersion, equi-dispersion, and under-dispersion.

View Article and Find Full Text PDF

Current status data arise when each subject under study is examined only once at an observation time, and one only knows the failure status of the event of interest at the observation time rather than the exact failure time. Moreover, the obtained failure status is frequently subject to misclassification due to imperfect tests, yielding misclassified current status data. This article conducts regression analysis of such data with the semiparametric probit model, which serves as an important alternative to existing semiparametric models and has recently received considerable attention in failure time data analysis.

View Article and Find Full Text PDF

Interval-censored failure time data arise commonly in various scientific studies where the failure time of interest is only known to lie in a certain time interval rather than observed exactly. In addition, left truncation on the failure event may occur and can greatly complicate the statistical analysis. In this paper, we investigate regression analysis of left-truncated and interval-censored data with the commonly used additive hazards model.

View Article and Find Full Text PDF

Recurrent event data with a terminal event commonly arise in many longitudinal follow-up studies. This article proposes a class of dynamic semiparametric transformation models for the marginal mean functions of the recurrent events with a terminal event, where some covariate effects may be time-varying. An estimation procedure is developed for the model parameters, and the asymptotic properties of the resulting estimators are established.

View Article and Find Full Text PDF

Recurrent event and failure time data arise frequently in many clinical and observational studies. In this article, we propose a joint modeling of generalized scale-change models for the recurrent event process and the failure time, and allow the two processes to be correlated through a shared frailty. The proposed joint model is flexible in that it requires neither the Poisson assumption for the recurrent event process nor a parametric assumption on the frailty distribution.

View Article and Find Full Text PDF

Multivariate recurrent event data are frequently encountered in biomedical and epidemiological studies when subjects experience multiple types of recurrent events. In practice, the event type information may be missing due to a variety of reasons. In this article, we consider a semiparametric additive rates model for multivariate recurrent event data with missing event types.

View Article and Find Full Text PDF

A mixture proportional hazards cure model with latent variables is proposed. The proposed model assesses the effects of the observed and latent risk factors on the hazards of uncured subjects and the cure rate through a proportional hazards model and a logistic model, respectively. Factor analysis is employed to measure the latent variables through correlated multiple indicators.

View Article and Find Full Text PDF

Multivariate interval-censored data arise when each subject under study can potentially experience multiple events and the onset time of each event is not observed exactly but is known to lie in a certain time interval formed by adjacent examination times with changed statuses of the event. This type of incomplete and complex data structure poses a substantial challenge in practical data analysis. In addition, many potential risk factors exist in numerous studies.

View Article and Find Full Text PDF

In HIV vaccine efficacy trials, mark-specific hazards models have important applications and can be used to evaluate the strain-specific vaccine efficacy. Additive hazards models have been widely used in practice, especially when continuous covariates are present. In this article, we conduct variable selection for a mark-specific additive hazards model.

View Article and Find Full Text PDF

When to initiate treatment on patients is an important problem in many medical studies such as AIDS and cancer. In this article, we formulate the treatment initiation time problem for time-to-event data and propose an optimal individualized regime that determines the best treatment initiation time for individual patients based on their characteristics. Different from existing optimal treatment regimes where treatments are undertaken at a pre-specified time, here new challenges arise from the complicated missing mechanisms in treatment initiation time data and the continuous treatment rule in terms of initiation time.

View Article and Find Full Text PDF

Balancing allocation of assigning units to two treatment groups to minimize the allocation differences is important in biomedical research. The complete randomization, rerandomization, and pairwise sequential randomization (PSR) procedures can be employed to balance the allocation. However, the first two do not allow a large number of covariates.

View Article and Find Full Text PDF

Failure time data with a cured subgroup are frequently confronted in various scientific fields and many methods have been proposed for their analysis under right or interval censoring. However, a cure model approach does not seem to exist in the analysis of partly interval-censored data, which consist of both exactly observed and interval-censored observations on the failure time of interest. In this article, we propose a two-component mixture cure model approach for analyzing such type of data.

View Article and Find Full Text PDF

Binomial regression models are commonly applied to proportion data such as those relating to the mortality and infection rates of diseases. However, it is often the case that the responses may exhibit excessive zeros; in such cases a zero-inflated binomial (ZIB) regression model can be applied instead. In practice, it is essential to test if there are excessive zeros in the outcome to help choose an appropriate model.

View Article and Find Full Text PDF

In many medical studies, markers are contingent on recurrent events and the cumulative markers are usually of interest. However, the recurrent event process is often interrupted by a dependent terminal event, such as death. In this article, we propose a joint modeling approach for analyzing marker data with informative recurrent and terminal events.

View Article and Find Full Text PDF

Recurrent event data are commonly encountered in biomedical studies. In many situations, they are subject to an informative terminal event, for example, death. Joint modeling of recurrent and terminal events has attracted substantial recent research interests.

View Article and Find Full Text PDF

Recurrent event data with a terminal event commonly arise in longitudinal follow-up studies. We use a weighted composite endpoint of all recurrent and terminal events to assess the overall effects of covariates on the two types of events. A semiparametric additive rates model is proposed to analyze the weighted composite event process and the dependence structure among recurrent and terminal events is left unspecified.

View Article and Find Full Text PDF

Censored failure time data with a cured subgroup is frequently encountered in many scientific areas including the cancer screening research, tumorigenicity studies, and sociological surveys. Meanwhile, one may also encounter an extraordinary large number of risk factors in practice, such as patient's demographic characteristics, clinical measurements, and medical history, which makes variable selection an emerging need in the data analysis. Motivated by a medical study on prostate cancer screening, we develop a variable selection method in the semiparametric nonmixture or promotion time cure model when interval-censored data with a cured subgroup are present.

View Article and Find Full Text PDF

Random effects two-part models have been applied to longitudinal studies for zero-inflated (or semi-continuous) data, characterized by a large portion of zero values and continuous non-zero (positive) values. Examples include monthly medical costs, daily alcohol drinks, relative abundance of microbiome, etc. With the advance of information technology for data collection and storage, the number of variables available to researchers can be rather large in such studies.

View Article and Find Full Text PDF

Recurrent event data from a long single realization are widely encountered in point process applications. Modeling and analyzing such data are different from those for independent and identical short sequences, and the development of statistical methods requires careful consideration of the underlying dependence structure of the long single sequence. In this paper, we propose a semiparametric additive rate model for a modulated renewal process, and develop an estimating equation approach for the model parameters.

View Article and Find Full Text PDF

Many studies have focused on determining the effect of the body mass index (BMI) on the mortality in different cohorts. In this article, we propose an additive-multiplicative mean residual life (MRL) model to assess the effects of BMI and other risk factors on the MRL function of survival time in a cohort of Chinese type 2 diabetic patients. The proposed model can simultaneously manage additive and multiplicative risk factors and provide a comprehensible interpretation of their effects on the MRL function of interest.

View Article and Find Full Text PDF