This study aims to develop a combined population pharmacokinetic (PPK) model for aripiprazole (ARI) and its main active metabolite dehydroaripiprazole (DARI) in pediatric patients with tic disorders (TD), to investigate the inter-individual variability caused by physiological and genetic factors in pharmacokinetics of ARI and optimize the dosing regimens for pediatric patients. A prospective PPK research was performed in Chinese children with TD. Totally 84 patients aged 4.
View Article and Find Full Text PDFThe present study aimed to establish population pharmacokinetic models of latamoxef, as well as its R- and S-epimers, and generate findings to guide the individualized administration of latamoxef in pediatric patients. A total of 145 in-hospital children aged 0.08-10.
View Article and Find Full Text PDFJ Infect Dev Ctries
September 2020
Introduction: COVID-19 has become a global health security issue, it has caused more than half a million deaths worldwide so far, the treatment strategies are the most concerned issues for clinicians. In this study, the treatments and outcomes in 40 pediatric patients diagnosed with COVID-19 and treated with different drugs were evaluated.
Methodology: All cases were diagnosed with COVID-19 nucleic acid positive by using RT-PCR or clinical manifestations, imaging specific characteristics and epidemiological clinical diagnosis.
Knowledge of pharmacokinetic (PK) behavior of norvancomycin (NVCM) in pediatric patients is lacking, which leads to empirical therapy in clinical practice. This study developed a population PK model of children aged 0-15 years; 112 opportunistic samples in total from 90 children were analyzed. The stability and prediction of the final model were evaluated by goodness-of-fit plots, nonparametric bootstrap, visual predictive check, and normalized prediction distribution errors.
View Article and Find Full Text PDFThe aberrant expression of Vangl1 is highly correlated with dysontogenesis, especially for neural tube defects. Therefore, the ultrasensitive detection of Vangl1 would provide a new approach for the specific early diagnostics in dysembryoplasia. However, no quantitative detection method is currently available.
View Article and Find Full Text PDFA simplified electrochemical multianalyte immunosensor for the simultaneous detection of high sensitivity C-reactive protein (hsCRP) and soluble CD40 ligand (sCD40L) that uses reduced graphene oxide-tetraethylene pentamine (rGO-TEPA) that directly adsorbs metal ions as labels is reported. rGO-TEPA contains a large number of amino groups and has excellent conductivity, making it an ideal template for the loading of Pb(2+) and Cu(2+), which greatly amplifies the detection signals. The signals could be directly detected in a single run through differential pulse voltammetry (DPV), and each biorecognition event produces a distinct voltammetric peak.
View Article and Find Full Text PDFFor the first time, a simple, ultrasensitive and label-free electrochemical monocyte chemotactic protein-1 (MCP-1) immunosensor based on orderly oriented conductive wires has been developed. A conductive wire, which is similar to an electron-conducting tunnel, was designed with Au nanoparticles (AuNPs) joined to Au@Pt core-shell microspheres via a cysteamine (CA) crosslinker. To enhance the sensitivity of the immunosensor, Au nanoparticles were electrodeposited onto the gold electrode, and CA was self-assembled via strong Au-S covalent bonds, providing an appropriate surface and promoting electron transfer.
View Article and Find Full Text PDFIn this work, a novel electrochemical immunosensor for the detection of secretoneurin (SN), which uses metal ion functionalised reduced graphene oxide-tetraethylene pentamine (rGO-TEPA) as a label, is reported for the first time. rGO-TEPA contains a large number of amino groups, which makes it an ideal templet for the loading of metal ions. rGO-TEPA-Pb(2+) was employed to immobilise secondary secretoneurin (SN) antibody (Ab2), and the resulting nanocomposite (Ab2-rGO-TEPA-Pb(2+)) was used as a trace tag for signal amplification.
View Article and Find Full Text PDFα2,6-Sialylated glycans are crucial molecular targets for cancer diagnosis and clinical research. In this work, a novel ultrasensitive electrochemical biosensor was fabricated based on a graphite oxide (GO), Prussian blue (PB), and PTC-NH2 (an ammonolysis product of 3,4,9,10-perylenetetracarboxylic dianhydride) nanocomposite for the selective detection of α2,6-sialylated glycans. To increase the sensitivity of the electrochemical biosensor, gold nanoparticles (GNPs) were immobilized on a GO-PB-PTC-NH2 modified glassy carbon electrode (GCE).
View Article and Find Full Text PDF