By integrating a tailor-made donor-acceptor (D-A) ligand in a metal-organic framework (MOF), a material with unprecedented features emerges. The ligand combines a pair of cyano groups as acceptors with four sulfanylphenyls as donors, which expose each a carboxylic acid as coordination sites. Upon treatment with zinc nitrate in a solvothermal synthesis, the MOF is obtained.
View Article and Find Full Text PDFFluoro- and chlorofluorocabons (FC/CFCs) are important refrigerants, solvents, and fluoropolymers in industry while being toxic and carrying high global warming potential. Detection and reclamation of FC/CFCs based on adsorption technology with highly selective adsorbents is important to labor safety and environmental protection. Herein, the study reports an integrated method to combine capture, separation, enrichment, and analysis of representative FC/CFCs (chlorodifluoromethane(R22) and 1,1,1,2-tetrafluoroethane (R134a)) by using the highly stable and porous Zr-MOF, DUT-67.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Acetylene (CH) is widely used as a raw material for producing various downstream commodities in the petrochemical and electronic industry. Therefore, the acquisition of high-purity CH from a CH/CO mixture produced by partial methane combustion or thermal hydrocarbon cracking is of great significance yet highly challenging due to their similar physical and chemical properties. Herein, we report an anionic metal-organic framework (MOF) named LIFM-210, which has Li cations in the pores and shows a higher adsorption affinity for CH than CO.
View Article and Find Full Text PDFDeep SO removal and recovery as industrial feedstock are of importance in flue-gas desulfurization and natural-gas purification, yet developing low-cost and scalable physisorbents with high efficiency and recyclability remains a challenge. Herein, we develop a viable synthetic protocol to produce DUT-67 with a controllable MOF structure, excellent crystallinity, adjustable shape/size, milli-to-kilogram scale, and consecutive production by recycling the solvent/modulator. Furthermore, simple HCl post-treatment affords depurated DUT-67-HCl featuring ultrahigh purity, excellent chemical stability, fully reversible SO uptake, high separation selectivity (SO/CO and SO/N), greatly enhanced SO capture capacity, and good reusability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
Adsorptive separation based on porous solid adsorbents has emerged as an excellent effective alternative to energy-intensive conventional separation methods in a low energy cost and high working capacity manner. However, there are few stable mesoporous metal-organic frameworks (MOFs) for efficient purification of methane from other light hydrocarbons in natural gas. Herein, we report a series of stable mesoporous MOFs, MIL-101-Cr/Fe/Fe-NH, for efficient separation of CH and CH from a ternary mixture CH/CH/CH.
View Article and Find Full Text PDFA nitro-decorated microporous covalent organic framework, TpPa-NO, has been synthesized in a gram scale with a one-pot reaction. It can effectively selectively separate CH from a CH/CH/CO mixture and capture CO from CO/N based on ideal adsorption solution theory calculations and transient breakthrough experiments. Theoretical calculations illustrated that the hydrogen atoms of imine bonds, carbonyl oxygen, and nitro group show high affinity toward CH and CO, playing vital roles in efficient separation.
View Article and Find Full Text PDFGlobal warming associated with CO emission has led to frequent extreme weather events in recent years. Carbon capture using porous solid adsorbents is promising for addressing the greenhouse effect. Herein, we report a series of robust metal-organic cages (MOCs) featuring various functional groups, such as methyl and amine groups, for CO/N separation.
View Article and Find Full Text PDFDue to the ultralow amounts of CH and CH gases, to design and synthesize water-stable MOFs that are promising for real-world efficient pipeline natural gas (NG) upgrading by the recovery of individual CH and CH gases is still a great challenge. Here, a N/O/F heteroatom-rich and rooflike [Cu(II)Cu(I)(COO)(tetrazolyl)] cluster-based ultra-microporous -MOF (SNNU-Bai68) was afforded as a multiple heteroatom-rich and curved-surface-shaped cluster-based ultra-microporous MOF and the first porous MOF based upon such rooflike [Cu(II)Cu(I)(tetrazolyl)] cluster. In SNNU-Bai68, the rooflike cluster was further assembled into a 1D chain secondary building block (SBB), which led to a high density of accessible potential adsorptive sites.
View Article and Find Full Text PDF