Non-aqueous media dyeing technology has highly innovative as it reduces pollution without increasing cost in polyester/cotton blended fabric dyeing. However, disperse dyes can stain in cotton component of the polyester/cotton blended fabric during dyeing process, resulting poor quality of dyed products. In this study, a groundbreaking comprehensive investigation was conducted on the dyeing behavior of C.
View Article and Find Full Text PDFA conductive film (PNIPAM-rGO/BC) was fabricated combining bacterial cellulose (BC) with poly-N-isopropylacrylamide-modified graphene oxide (PNIPAM-GO) through vacuum filtration and steam reduction techniques. The conductivity and performance of PNIPAM-GO composite and the resulting conductive film were studied. The key findings revealed that PNIPAM-GO composite exhibited a reversible temperature-sensitive behavior.
View Article and Find Full Text PDFMicrocapsules are small particles that can effectively protect a core material from degradation. Microcapsules with double capsule walls can improve stability and reduce breakage due to the fact that the physical and chemical properties of double-walled materials can complement each other, thus enhancing the quality and applicability of a microcapsule. Microcapsules can achieve controlled release of core materials by using a temperature-sensitive wall material.
View Article and Find Full Text PDFPolymers (Basel)
February 2023
Traditional water-based dyeing of polyester textiles usually generates burdensome processes and a great deal of wastewater, which can no longer meet the green and sustainable developments in the textile dyeing industry. In the silicone waterless dyeing system, polyester textiles can be dyed with disperse dye without water. However, the dyeing performance of polyester textiles is influenced by the dispersant.
View Article and Find Full Text PDFSilk has been widely used not only in the textile field but also in non-textile applications, which is composed of inner fibrous protein, named fibroin, and outer global protein, named sericin. Due to big differences, such as appearance, solubility, amino acid composition and amount of reactive groups, silk fibroin and sericin usually need to be separated before further process. The residual sericin may influence the molecular weight, structure, morphology and properties of silk fibroin, so that degumming of silk is important and necessary, not only in textile field but also in non-textile applications.
View Article and Find Full Text PDFAs a promising new dyeing process without using water, the non-aqueous medium dyeing of polyester has attracted people's attention and some progress has been made in related research. However, the oligomers of polyester fiber can affect the dyeing of polyester during the use of a silicone waterless dyeing system. Based on this point, the oligomer problem in the silicone waterless dyeing system was investigated.
View Article and Find Full Text PDFIn order to solve the poor rubbing fastness of dyed cotton fiber in the indigo/silicon non-aqueous dyeing system, the process parameters of the silicon non-aqueous dyeing system were optimized. Dyed cotton fiber was post-treated to achieve the optimum dyeing conditions for obtaining a better rubbing fastness. Meanwhile, the dyeing performance of cotton fiber in a traditional water bath and silicon non-aqueous dyeing system was compared.
View Article and Find Full Text PDFSilicone reverse dyeing technology provides an important means of saving water and salts-free in the textile dyeing industry. The interactions between dyes and surfactants may influence the hydrolysis of dye during dyeing. In this investigation, the effect of ethylene oxide content in nonionic surfactant on the hydrolytic reaction of reactive dye was firstly investigated in a siloxane reverse emulsion dyeing system.
View Article and Find Full Text PDFIn recent years, new concepts in textile dyeing technology have been investigated which aim to decrease the use of chemicals and the emission of water. In this work, dyeing of cotton textiles with reactive dyes has been investigated in a silicone non-aqueous dyeing system. Compared with conventional aqueous dyeing, almost 100% of reactive dyes can be adsorbed on cotton textiles without using any salts in non-aqueous dyeing systems, and the fixation of dye is also higher (80%~90% for non-aqueous dyeing vs.
View Article and Find Full Text PDFDisperse dyeing for polyethylene terephthalate (PET) fiber in different non-aqueous solvent dyeing systems have been extensively studied over the past decades. In the present work, disperse dyeing for PET was investigated in a silicone solvent dyeing system. The influence of accelerant on the fiber swelling, uptake of dye, K/S value of dyed fiber, and dye solubility in the silicone solvent were systematically investigated.
View Article and Find Full Text PDFThe main goal of this article is to study the diffusion mechanism of aqueous solutions and the swelling of cellulosic fibers in the silicone non-aqueous dyeing system via fluorescent labeling. Due to non-polar media only adsorbing on the surface of fiber, cellulosic fiber could not swell as a result of the non-polar media. However, because water molecules can diffuse into the non-crystalline region of the fiber, cellulosic fiber could swell by water which was dispersed or emulsified in a non-aqueous dyeing system.
View Article and Find Full Text PDF