Publications by authors named "Liujun Cao"

With the rapid development of electric vehicle technology, commercial graphite anodes (theoretical capacity of 372 mA h g) of lithium-ion batteries cannot meet the needs for high power density. Silicon has high theoretical capacity (4200 mA h g), low working voltage (about 0.4 V Li/Li), rich resources and environmental friendly nature; hence, it is regarded as a potential negative electrode material.

View Article and Find Full Text PDF

Rechargeable aqueous zinc-ion hybrid supercapacitors (ZHSs) are drawing extensive attention because of their cost-effectiveness and diminished safety hazards. Nevertheless, large-scale application of ZHSs has been hindered by the severe side reactions and rampant dendrites growth on the surface of Zn metal anodes. Herein, we propose a three-dimensional organic-inorganic composite frame material as an artificial bi-functional layer coated on the zinc foil, featuring nitrogenous functional groups with zincophilicity (abbreviated as NCFM@Zn).

View Article and Find Full Text PDF

Aqueous zinc ion hybrid capacitors (ZHCs) are promising as electrochemical energy storage devices due to their safety and cost-effectiveness. However, the practical application of aqueous ZHCs is impeded by zinc dendrite growth and side reactions induced by HO during long-term cycling. Herein, an organic small molecule, dimethyl sulfoxide (DMSO), is elaborately introduced into 2 M ZnSO electrolyte to simultaneously overcome these challenges.

View Article and Find Full Text PDF

Introduction: Several studies have confirmed that mutations in the Wilms tumor 1 (WT1) gene occur in adult acute myeloid leukemia (AML). However, few data are available regarding the incidence of WT1 mutations in CEBPA AML and their impact.

Methods: We retrospectively analyzed the frequency and clinical impact of WT1 mutations in 220 newly diagnosed AML patients with CEBPA mutations(CEBPA).

View Article and Find Full Text PDF

Introduction: The aim of the study was to determine molecular genetic and clinical characterization of acute myeloid leukemia (AML) with trisomy 8 as the sole chromosome abnormality, a recurrent but rare chromosomal abnormality in AML.

Methods: Interphase fluorescence in situ hybridization, reverse transcriptase-quantitative polymerase chain reaction for gene rearrangement and next-generation sequencing (NGS) were performed on sole trisomy 8 AML patients.

Results: A total of 35 AML patients with trisomy 8 as the sole chromosome abnormality were screened.

View Article and Find Full Text PDF

Introduction: We report the co-mutations in AML with CEBPA or CEBPA and their clinical features in a large cohort (n = 302) of CEBPA AML patients.

Materials And Methods: We retrospectively sequenced 112 genes in 302 patients with CEBPA using NGS, and studied the spectrum and clinical impact of co-mutations in CEBPA and CEBPA.

Results: ① The average number of mutations in CEBPA and CEBPA AML was comparable, but not significant (P = 0.

View Article and Find Full Text PDF

Onion-like carbon (OLC) is one kind of a quasi-nanosphere with a concentric graphite shell structure and abundant mesopores, which is appropriate for a high rate of charging/discharging and long-lifespan cycling. However, the moderate specific surface area seriously impeded its capacitance performance in comparison with activated carbon and porous carbon. Herein, we have unlocked the Zn ion storage performance of OLC material through introducing N and P dopants.

View Article and Find Full Text PDF

Three-dimensional (3D) carbon aerogels with well-defined structures, e.g. high specific surface area (SSA), appropriate pore size distribution, good electrical conductivity and ideal building blocks, have been regarded as promising electrode materials or substrates for incorporation with pseudocapacitive materials for energy storage and conversion applications.

View Article and Find Full Text PDF

Li-ion capacitors (LICs) have demonstrated great potential for bridging the gap between lithium-ion batteries and supercapacitors in electrochemical energy storage area. The main challenge for current LICs (contain a battery-type anode as well as a capacitor-type cathode) lies in circumventing the mismatched electrode kinetics and cycle degradation. Herein, a mesh-like nitrogen (N)-doped carbon nanosheets with multiscale pore structure is adopted as both cathode and anode for a dual-carbon type of symmetric LICs to alleviate the above mentioned problems via a facile and green synthesis approach.

View Article and Find Full Text PDF

Despite various electrochemically active materials, such as metals, metal oxides and sulfides, which have been widely utilized for lithium storage, these materials still encounter unsatisfied electrochemical performances including low reversible capacity, slow charge-discharge capability and poor cycle performance. Here, we demonstrate a simple approach to fabricate one-dimensional CoO nanowires vertically aligned on a 3D graphene network (denoted as a 3D CoO/graphene network) via a wet chemistry process. The resulting CoO/graphene network possesses an interconnected graphene network, hierarchical pores and a carpet-like structure.

View Article and Find Full Text PDF

Various two-dimensional (2D) materials have recently attracted great attention owing to their unique properties and wide application potential in electronics, catalysis, energy storage, and conversion. However, large-scale production of ultrathin sheets and functional nanosheets remains a scientific and engineering challenge. Here we demonstrate an efficient approach for large-scale production of V2O5 nanosheets having a thickness of 4 nm and utilization as building blocks for constructing 3D architectures via a freeze-drying process.

View Article and Find Full Text PDF

Micrometer-sized electrochemical capacitors have recently attracted attention due to their possible applications in micro-electronic devices. Here, a new approach to large-scale fabrication of high-capacitance, two-dimensional MoS2 film-based micro-supercapacitors is demonstrated via simple and low-cost spray painting of MoS2 nanosheets on Si/SiO2 chip and subsequent laser patterning. The obtained micro-supercapacitors are well defined by ten interdigitated electrodes (five electrodes per polarity) with 4.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiong7p5boiecgnarmvh0nv7kjjf00qddpe0): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once