Publications by authors named "Liujie Zhang"

Alzheimer's disease (AD) is the most common type of dementia among middle-aged and elderly individuals. Accelerating the prevention and treatment of AD has become an urgent problem. New technology including Computer-aided drug design (CADD) can effectively reduce the medication cost for patients with AD, reduce the cost of living, and improve the quality of life of patients, providing new ideas for treating AD.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a common malignancy with poor survival and requires long-term follow-up. Hence, we collected information on patients with Primary Hepatocellular Carcinoma in the United States from the Surveillance, Epidemiology, and EndResults (SEER) database. We used this information to establish a deep learning with a multilayer neural network (the NMTLR model) for predicting the survival rate of patients with Primary Hepatocellular Carcinoma.

View Article and Find Full Text PDF

China plays a crucial role in responding to global climate change. Provinces are the main sources of energy consumption and greenhouse gas emissions in China's economic and social development. However, it is still unclear how to achieve dual-carbon goals by formulating and implementing local policies to adapt to climate change.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created redox-sensitive hybrid nanoparticles with varying PEG densities, all maintaining a similar size of approximately 100 nm.
  • * Findings reveal that while higher PEG density reduces tumor cell uptake, nanoparticles with controlled PEG stripping enhance accumulation in tumors and improve antitumor activity.
View Article and Find Full Text PDF

A high-yield silver alkynyl assembly [Ag(C[triple bond, length as m-dash]C Bu)(CFCOO)(CHCN)] (1) constructed from [AgC[triple bond, length as m-dash]C Bu] ligand, CFCOOAg and CHCN auxiliary ligands with a one-dimensional infinite chain structure has been obtained in one pot. Compound 1 has been well-defined and characterized. The photocurrent properties and the temperature-sensitive luminescent properties of 1 have been investigated.

View Article and Find Full Text PDF

Background And Objective: Gemcitabine (GEM) effectively inhibits bladder cancer progression in the clinic, but novel combination treatments using multiple drugs are needed.

Materials And Methods: The bladder cancer cell lines EJ and UMUC3 were treated with triptolide (TPL) and/or GEM. Tumour cell viability and proliferation were measured using MTT and clonogenic assays, respectively.

View Article and Find Full Text PDF

The importance of mitochondrial delivery of an anticancer drug to cancer cells has been recognized to improve therapeutic efficacy. The introduction of lipophilic cations, such as triphenylphosphonium (TPP), onto the surface of nanocarriers was utilized to target mitochondria via strong electrostatic interactions between positively charged TPP and the negatively charged mitochondrial membrane. However, the highly positive charge nature of TPP leads to rapid clearance from the blood, decrease of circulation lifetime, and nonspecific targeting of mitochondria of cells.

View Article and Find Full Text PDF

Codelivery is a promising strategy to overcome the limitations of single chemotherapeutic agents in cancer treatment. Despite progress, codelivery of two or more different functional drugs to increase anticancer efficiency still remains a challenge. Here, reduction-sensitive lipid-polymer hybrid nanoparticles (LPNPs) drug delivery system composed of monomethoxy-poly(ethylene glycol)---hexadecyl (mPEG---C), soybean lecithin, and poly(D,L-lactide-co-glycolide) (PLGA) was used for codelivery of doxorubicin (DOX) and a Chinese herb extract triptolide (TPL).

View Article and Find Full Text PDF

An amphiphilic polymer DLPE-S-S-MPEG was synthesized and employed with PCL to prepare two-component reduction-sensitive lipid-polymer hybrid nanoparticles (SLPNPs) for in vitro and in vivo delivery of a hydrophobic anticancer drug (Doxorubicin, DOX). Insensitive lipid-polymer hybrid nanoparticles (ILPNPs) were prepared as a control. The mean sizes of the LPNPs ranged from 100 nm to 120 nm.

View Article and Find Full Text PDF

Mitochondria are one type of the major organelles in the cell, participating in a variety of important physiological and biochemical processes, such as tricarboxylic acid cycle, fatty acid metabolism and oxidative phosphorylation. Meanwhile, it also happens to be the key regulator of apoptosis by triggering the complex cell-death processes through a variety of mechanisms. Since it plays a pivotal role in cell-death, a mitochondria-targeted treatment strategy could be promising for cancer therapy.

View Article and Find Full Text PDF

The overwhelming majority of drugs exert their pharmacological effects after reaching their target sites of action, however, these target sites are mainly located in the cytosol or intracellular organelles. Consequently, delivering drugs to the specific organelle is the key to achieve maximum therapeutic effects and minimum side-effects. In the work reported here, we designed, synthesized, and evaluated a novel mitochondrial-targeted multifunctional nanoparticles (MNPs) based on chitosan derivatives according to the physiological environment of the tumor and the requirement of mitochondrial targeting drug delivery.

View Article and Find Full Text PDF

Iron oxide porous nanorods (IOPNR) with lengths ranging from 40nm to 60nm and pore diameters ranging from 5nm to 10nm were prepared, and further modified with NH2-PEG-FA (FA-PEG-IOPNR) for ligand targeting and modified with NH2-PEG-OCH3 (PEG-IOPNR) as a control. Instead of chemical bonding, doxorubicin (DOX), a low water solubility anticancer drug, was loaded in the pores of the modified IOPNR because of their porous structure and high porosity. The release of DOX in acidic PBS solution (pH 5.

View Article and Find Full Text PDF