Janus kinase 2 (JAK2), one of the JAK isoforms participating in a JAK/STAT signaling cascade, has been considered a potential clinical target owing to its critical role in physiological processes involved in cell growth, survival, development, and differentiation of various cell types, especially immune and hematopoietic cells. Substantial studies have proven that the inhibition of this target could disrupt the JAK/STAT pathway and provide therapeutic outcomes for cancer, immune disorders, inflammation, and COVID-19. Herein, we performed docking-based virtual screening of 63 in-house furopyridine-based compounds and verified the first-round screened compounds by in vitro enzyme- and cell-based assays.
View Article and Find Full Text PDFTargeting L858R/T790M and L858R/T790M/C797S mutant EGFR is a critical challenge in developing EGFR tyrosine kinase inhibitors to overcome drug resistance in non-small cell lung cancer (NSCLC). The discovery of next-generation EGFR tyrosine kinase inhibitors (TKIs) is therefore necessary. To this end, a series of furopyridine derivatives were evaluated for their EGFR-based inhibition and antiproliferative activities using computational and biological approaches.
View Article and Find Full Text PDFA series of 1,3-disubstituted 2-iminobenzimidazolines as well as a number of their tautomeric analogs were synthesized. The synthesized compounds were tested for their cytotoxicity against MDCK cells and for inhibiting activity against influenza virus A/California/07/09 (H1N1)pdm09. Based on the results obtained, 50% cytotoxic concentration (CC), 50% inhibiting concentration (IC) and selectivity index (SI) were calculated for each compound.
View Article and Find Full Text PDF