Publications by authors named "Liudmil Antonov"

The effect of the external electric field on the ground-state tautomerism in 8-(benzo[d]thiazol-2-yl)quinolin-7-ol has been studied by using density functional theory. The compound exists as an enol tautomer (off state) and under the influence of the external electric field a long-range intramolecular proton transfer can occur, placing the tautomeric proton at the quinolyl nitrogen atom (on state). This is a result of the much higher dipole moment of the end keto tautomer and indicates that the external electric field can be used to mimic the implicit solvent effect in tautomeric systems.

View Article and Find Full Text PDF

Theoretical design of several proton cranes, based on 7-hydroxyquinoline and 3-hydroxypyridine as proton-transfer frames, has been attempted using ground and excited-state density functional theory (DFT) calculations in various environments. Imidazo[1,2-]pyridine, pyrazolo[1,5-]pyridine and benzimidazole were considered as proton crane units. The proton crane action requires the existence of a single enol-like form in the ground state, which under excitation goes to the end keto-like one through a series of consecutive excited-state intramolecular proton transfers (ESIPT) and twisting steps with the participation of a crane unit, resulting in a long-range intramolecular proton transfer.

View Article and Find Full Text PDF

Herein, the detailed mechanism of intramolecular proton transfer in molecular switches, constructed from 7-hydroxy quinoline substituted in the eight-position C-C single axle, connected to three different proton cranes (morpholine, piperidine, and 1,3,5-dioxazine), was investigated by means of theoretical chemistry. The theoretical interpretation of the rotational mechanism and its stable structures were proposed for the well-known Varma's proton crane, based on morpholine molecule. The reliability of the theoretical simulations was confirmed by the available literature data from time-dependent IR measurements.

View Article and Find Full Text PDF

Herein, we demonstrate a working prototype of a conjugated proton crane, a reversible tautomeric switching molecule in which truly intramolecular long-range proton transfer occurs in solution at room temperature. The system consists of a benzothiazole rotor attached to a 7-hydroxy quinoline stator. According to the experimental and theoretical results, the OH proton is delivered under irradiation to the quinolyl nitrogen atom through a series of consecutive proton transfer and twisting steps.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used molecular modeling to design and analyze NT(8-13) analogs for binding to these receptors, confirming the importance of specific amino acid positions in receptor affinity.
  • * The compound 10 showed better stability and ability to cross the blood-brain barrier, significantly improving motor function and memory in mouse models, indicating potential for new PD treatments.
View Article and Find Full Text PDF

A series of OLED-relevant compounds, consisting of 1,3,5-triazine core linked to various aromatic arms by amino group, has been synthesized and characterized. The studied compounds exist in solution as a mixture of two conformers, a symmetric propeller and asymmetric conformer, in which one of the aromatic arms is rotated around the C-N bond. At temperatures below -40 °C, the VT NMR spectra in DMF-d7 are in a slow exchange regime, and the signals of two conformers can be elucidated.

View Article and Find Full Text PDF

In this review, we have attempted to briefly summarize the influence of an external electric field on an assembly of tautomeric molecules and to what experimentally observable effects this interaction can lead to. We have focused more extensively on the influence of an oriented external electric field (OEEF) on excited-state intramolecular proton transfer (ESIPT) from the studies available to date. The possibilities provided by OEEF for regulating several processes and studying physicochemical processes in tautomers have turned this direction into an attractive area of research due to its numerous applications.

View Article and Find Full Text PDF

In the tautomeric Schiff bases, derived from 7-hydroxyquinoline, two competitive channels are possible upon excitation of the enol tautomer, namely proton transfer (PT) through intramolecular hydrogen bonding to the corresponding keto form and - isomerization around the azomethine double bond. The former leads to switching, based on twist-assisted excited state intramolecular PT, where the long-range proton transfer can occur as a targeted process. The latter, determined by the flexibility of the crane part, reduces the efficiency of the main targeted process.

View Article and Find Full Text PDF

Lavender ( Mill.) is an important essential oil-bearing and medicinal plant with high commercial value. Lavender scent components can be derived not only as an essential oil but also as lavender concrete or absolute.

View Article and Find Full Text PDF

The ability of long-range proton transport by substitution of 7-hydroxyquinoline at the eighth position with sulfonamide and sulfonylhydrazone rotor units to act as a crane-arm has been studied. Different proton transport pathways triggered by different stimuli have been established depending on the structure of the crane-arms. Solvent-driven proton switching from OH to the quinoline nitrogen (N) site, facilitated by a sulfonamide transporter group in polar protic and aprotic solvents, has been confirmed by optical (absorption and fluorescence) and NMR spectroscopies as well as by single-crystal X-ray structure analysis.

View Article and Find Full Text PDF

The acid dissociation constant of three benzimidazoles, namely 2,2'-bibenzo[d]imidazole, 2,5'-bibenzo[d]imidazole, and 5,5'-bibenzo[d]imidazole, have been investigated by means of density functional theory calculations in gas phase and in aqueous solution. The theoretical approach was validated by the comparing of predicted and experimentally determined p values in imidazole, benzimidazole, and 2-phenylbenzimidazole. From the studied compounds, 2,2'-bibenzo[d]imidazole was found to be the most acidic, which made it a valuable candidate as a material for polymer electrolyte membrane fuel cells.

View Article and Find Full Text PDF

A comprehensive chemical profiling of 1,1,1,2-tetrafluoroethane (freon R134a) subcritical extracts from the main genotypes of oil-bearing roses, was performed by gas chromatography-mass spectrometry (GC/MS) and gas chromatography with flame ionization detection (GC-FID) in order to reveal the differences in their chemical composition. One hundred and three individual compounds were identified using GC/MS and their quantitative content was determined using GC-FID, representing 89.8, 92.

View Article and Find Full Text PDF

The reimagined concept of long-range tautomeric proton transfer using crane subunits is shown by designing and synthesising two new acylhydrazones containing a 7-hydroxyquinoline (7-OHQ) platform. The acylhydrazone subunits attached to the 7-OHQ at the 8th position act as crane arms for delivering proton cargo to the quinoline nitrogen. Light-induced tautomerization to their keto forms leads to Z/E isomerization of the C=C axle bond, followed by proton delivery to the quinoline nitrogen by the formation of covalent or hydrogen bonds.

View Article and Find Full Text PDF

A novel rotary switch, overcoming the disadvantages of hydrazone based switches with competitive proton acceptor sub-rotors, has been designed. The new compound contains a pyridyl ring and a COOH group as sub-rotors, which provides engagement of the pyridyl nitrogen atom and leads to the existence of a single isomer in the ground state. The availability of acidic functionality in the rotor creates conditions for excited state intramolecular proton transfer (ESIPT), which exhibits anti-Kasha behavior.

View Article and Find Full Text PDF

The photoinduced birefringence of two 4-substituted phthalimide 2-hydroxy Schiff bases, containing salicylic (4) and 2-hydroxy-1-naphthyl (5) moieties has been investigated in PMMA matrix. Their optical behaviour as nanocomposite films was revealed by combined use of DFT quantum chemical calculations (in ground and excited state) and experimental optical spectroscopy (UV-Vis and fluorescence). The results have shown that solid-state reversible switching takes place by enol/keto tautomerization and Z/E isomerization.

View Article and Find Full Text PDF

In this short review, we attempt to unfold various aspects of excited-state intramolecular proton transfer (ESIPT) from the studies that are available up to date. Since Weller's discovery of ESIPT in salicylic acid (SA) and its derivative methyl salicylate (MS), numerous studies have emerged on the topic and it has become an attractive field of research because of its manifold applications. Here, we discuss some critical aspects of ESIPT and tautomerization from the mechanistic viewpoint.

View Article and Find Full Text PDF

Theoretical design of conjugated proton cranes, based on 7-hydroxyquinoline as a tautomeric sub-unit, has been attempted by using ground and excited state density functional theory (DFT) calculations in various environments. The proton crane action request existence of a single enol tautomer in ground state, which under excitation goes to the excited keto tautomer through a series of consecutive excited-state intramolecular proton transfer (ESIPT) steps with the participation of the crane sub-unit. A series of substituted pyridines was used as crane sub-units and the corresponding donor-acceptor interactions were evaluated.

View Article and Find Full Text PDF

There is no experimental information about the tautomerism of Favipiravir (). Therefore, its tautomeric state was predicted by using density functional theory in gas phase and in solution (toluene, acetonitrile and water). The results have shown that, in neutral state, the enol form is strongly dominating in both gas phase and solution.

View Article and Find Full Text PDF

The paper presents the synthesis and characterization of two 4-substituted phthalimide 2-hydroxy-Schiff bases containing salicylic (4) and 2-hydroxy-1-naphthyl (5) moieties. The structural differences of 2-hydroxyaryl substituents, resulting in different enol/keto tautomeric behaviour, depending on the solvent environment were studied by absorption UV-Vis spectroscopy. Compound 5 is characterized by a solvent-dependent tautomeric equilibrium (K in toluene = 0.

View Article and Find Full Text PDF

Two novel pinene-type ligands have been synthesized and their tautomeric and self-associating behavior studied in solution and in the solid state. The first ligand, an acetylated derivative of 5,6-pinene-bipyridine, displays keto-enol tautomerism in solution. This tautomeric equilibrium was studied by NMR and UV-Vis spectroscopy in various solvents, and the results were compared with the ones obtained through DFT calculations.

View Article and Find Full Text PDF

Raman spectroscopy, being able to provide rich information about the chemical composition of the sample, is gaining an increasing interest in the applications of food. Raman spectroscopy was used to analyze a set of wine samples (red and white) sourced from rarely studied traditional Bulgarian wines. One of the objectives of this study was to attempt the fast classification of Bulgarian wines according to variety and geographic origin.

View Article and Find Full Text PDF

The concept for sensing systems using the tautomerism as elementary signaling process has been further developed by synthesizing a ligand containing 4-(phenyldiazenyl)naphthalene-1-ol as a tautomeric block and an amide group as metal capturing antenna. Although it has been expected that the intramolecular hydrogen bonding (between the tautomeric hydroxy group and the nitrogen atom from the amide group) could stabilize the pure enol form in some solvents, the keto tautomer is also observed. This is a result from the formation of intramolecular associates in some solvents.

View Article and Find Full Text PDF

A comprehensive study was performed for the first time to compare two structurally related substance classes, namely indazole-5-carboxamides (11-16) and (indazole-5-yl)methanimines (17-22). Both chemical entities are potent, selective and reversible MAO-B inhibitors and, therefore, may serve as promising lead structures for the development of drug candidates against Parkinson's disease (PD) and other neurological disorders. Compounds 15 (K = 170 pM, SI = 25907) and 17 (K = 270 pM, SI = 16340) were the most potent and selective MAO-B inhibitors in both series.

View Article and Find Full Text PDF

We present a combined theoretical and experimental study on the UV-vis spectra of enol-keto (EK) and keto-keto (KK) tautomeric forms of curcumin dissolved in aqueous solution. Solvent effects have been investigated by resorting to the implicit polarizable continuum model (QM/PCM) and non-polarizable and fully polarizable QM/MM approaches, the latter based on the fluctuating charges (FQ) force-field. In particular, all methods are challenged to rationalize the contribution of conformational, electrostatic and polarization effects in the calculation of the vertical excitation spectra of curcumin tautomers.

View Article and Find Full Text PDF

The performance of 26 hybrid density functionals was tested against a tautomeric dataset (TautData), containing experimental information for the keto-enol tautomeric equilibrium in 16 tautomeric azodyes and Schiff bases in cyclohexane, carbon tetrachloride and acetonitrile. The results have shown that MN12-SX, BHandH and M06-2X can be used to describe the tautomeric state of the core structures in the frame of ~0.5 kcal/mol error and correctly predict the tautomeric state in respect of dominating tautomeric form.

View Article and Find Full Text PDF