296 million people worldwide are predisposed to developing severe end-stage liver diseases due to chronic hepatitis B virus (HBV) infection. HBV forms covalently closed circular DNA (cccDNA) molecules that persist as episomal DNA in the nucleus of infected hepatocytes and drive viral replication. Occasionally, the HBV genome becomes integrated into host chromosomal DNA, a process that is believed to significantly contribute to circulating HBsAg levels and HCC development.
View Article and Find Full Text PDFDihydroquinolizinones (DHQs) that inhibit cellular polyadenylating polymerases 5 and 7 (PAPD5 & 7), such as RG7834, have been shown to inhibit both hepatitis A (HAV) and hepatitis B virus (HBV) in vitro and in vivo. In this report, we describe RG7834-based proteolysis-targeting chimeras (PROTACs), such as compound 12b, (6S)-9-((1-((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)-21-oxo-3,6,9,12,15,18-hexaoxa-22-azapentacosan-25-yl)oxy)-6-isopropyl-10-methoxy-2-oxo-6,7-dihydro-2H-pyrido[2,1-a]isoquinoline-3-carboxylic acid. The PROTAC DHQs described here inhibited an HAV reporter virus in vitro with an IC of 277 nM.
View Article and Find Full Text PDFHepatitis B virus (HBV) chronically infects 296 million people worldwide and causes more than 820,000 deaths annually due to cirrhosis and hepatocellular carcinoma. Current standard-of-care medications for chronic hepatitis B (CHB) include nucleos(t)ide analogue (NA) viral DNA polymerase inhibitors and pegylated interferon alpha (PEG-IFN-α). NAs can efficiently suppress viral replication and improve liver pathology, but not eliminate or inactivate HBV covalently closed circular DNA (cccDNA).
View Article and Find Full Text PDFMost drugs used to treat viral disease target a virus-coded product. They inhibit a single virus or virus family, and the pathogen can readily evolve resistance. Host-targeted antivirals can overcome these limitations.
View Article and Find Full Text PDFHepatitis B virus (HBV) contains a partially double-stranded relaxed circular DNA (rcDNA) genome that is converted into a covalently closed circular DNA (cccDNA) in the nucleus of the infected hepatocyte by cellular DNA repair machinery. cccDNA associates with nucleosomes to form a minichromosome that transcribes RNA to support the expression of viral proteins and reverse transcriptional replication of viral DNA. In addition to the synthesis from incoming virion rcDNA, cccDNA can also be synthesized from rcDNA in the progeny nucleocapsids within the cytoplasm of infected hepatocytes via the intracellular amplification pathway.
View Article and Find Full Text PDFEmerg Microbes Infect
December 2021
Upon infection of hepatocyte, Hepatitis B virus (HBV) genomic DNA in nucleocapsid is transported into the nucleus and converted into a covalently closed circular (ccc) DNA to serve as the template for transcription of viral RNAs. Viral DNA in the cytoplasmic progeny nucleocapsid is another resource to fuel cccDNA amplification. Apparently, nucleocapsid disassembly, or viral genomic DNA uncoating, is an essential step for cccDNA synthesis from both infection and intracellular amplification pathways, and has a potential to activate DNA sensors and induce an innate immune response in infected hepatocytes.
View Article and Find Full Text PDFCovalently closed circular DNA (cccDNA) of hepadnaviruses exists as an episomal minichromosome in the nucleus of an infected hepatocyte and serves as the template for the transcription of viral mRNAs. It had been demonstrated by others and us that interferon alpha (IFN-α) treatment of hepatocytes induced a prolonged suppression of human and duck hepatitis B virus cccDNA transcription, which is associated with the reduction of cccDNA-associated histone modifications specifying active transcription (H3K9 or H3K27), but not the histone modifications marking constitutive (H3K9) or facultative (H3K27) heterochromatin formation. In our efforts to identify IFN-induced cellular proteins that mediate the suppression of cccDNA transcription by the cytokine, we found that downregulating the expression of signal transducer and activator of transcription 1 (STAT1), structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1), or promyelocytic leukemia (PML) protein increased basal level of cccDNA transcription activity and partially attenuated IFN-α suppression of cccDNA transcription.
View Article and Find Full Text PDFStimulator of interferon genes (STING) is an integral ER-membrane protein that can be activated by 2'3'-cGAMP synthesized by cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) upon binding of double-stranded DNA. It activates interferon (IFN) and inflammatory cytokine responses to defend against infection by microorganisms. Pharmacologic activation of STING has been demonstrated to induce an antiviral state and boost antitumor immunity.
View Article and Find Full Text PDFPersistent hepatitis B virus (HBV) infection relies on the establishment and maintenance of covalently closed circular (ccc) DNA, a 3.2 kb episome that serves as a viral transcription template, in the nucleus of an infected hepatocyte. Although evidence suggests that cccDNA is the repair product of nucleocapsid associated relaxed circular (rc) DNA, the cellular DNA polymerases involving in repairing the discontinuity in both strands of rcDNA as well as the underlying mechanism remain to be fully understood.
View Article and Find Full Text PDFIn order to identify host cellular DNA metabolic enzymes that are involved in the biosynthesis of hepatitis B virus (HBV) covalently closed circular (ccc) DNA, we developed a cell-based assay supporting synchronized and rapid cccDNA synthesis from intracellular progeny nucleocapsid DNA. This was achieved by arresting HBV DNA replication in HepAD38 cells with phosphonoformic acid (PFA), a reversible HBV DNA polymerase inhibitor, at the stage of single-stranded DNA and was followed by removal of PFA to allow the synchronized synthesis of relaxed circular DNA (rcDNA) and subsequent conversion into cccDNA within 12 to 24 h. This cccDNA formation assay allows systematic screening of the effects of small molecular inhibitors of DNA metabolic enzymes on cccDNA synthesis but avoids cytotoxic effects upon long-term treatment.
View Article and Find Full Text PDFHepatitis B virus (HBV) has infected one-third of world population, and 240 million people are chronic carriers, to whom a curative therapy is still not available. Similar to other viruses, persistent HBV infection relies on the virus to exploit host cell functions to support its replication and efficiently evade host innate and adaptive antiviral immunity. Understanding HBV replication and concomitant host cell interactions is thus instrumental for development of therapeutics to disrupt the virus-host interactions critical for its persistence and cure chronic hepatitis B.
View Article and Find Full Text PDFStimulator of interferon genes (STING) is an endoplasmic reticulum transmembrane protein that serves as a molecular hub for activation of interferon and inflammatory cytokine response by multiple cellular DNA sensors. Not surprisingly, STING has been demonstrated to play an important role in host defense against microorganisms and pharmacologic activation of STING is considered as an attractive strategy to treat viral diseases and boost antitumor immunity. In light of this we established a HepAD38-derived reporter cell line that expresses firefly luciferase in response to the activation of cyclic GMP-AMP synthase (cGAS)-STING pathway for high throughput screening (HTS) of small molecular human STING agonists.
View Article and Find Full Text PDFAntimicrob Agents Chemother
October 2017
Induction of interferon and proinflammatory cytokines is a hallmark of the infection of many different viruses. However, hepatitis B virus (HBV) does not elicit a detectable cytokine response in infected hepatocytes. In order to investigate the molecular mechanism underlying the innate immune evasion, a functional cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway was reconstituted in a human hepatoma cell line supporting tetracycline-inducible HBV replication.
View Article and Find Full Text PDFInvestigate the role of regulator of chromosome condensation 2 () on lung adenocarcinoma (LUAD) metastasis. Clinical specimens were used to assess the impact of RCC2 on LUAD metastasis. Mouse models, cytobiology, and molecular biology assays were performed to elucidate the function and underlying mechanisms of RCC2 in LUAD.
View Article and Find Full Text PDFExpert Opin Drug Discov
January 2017
The current standard care of chronic hepatitis B fails to induce a durable off-drug control of hepatitis B virus (HBV) replication in the majority of treated patients. The primary reasons are its inability to eliminate the covalently closed circular (ccc) DNA, the nuclear form of HBV genome, and restoration of the dysfunctional host antiviral immune response against the virus. Accordingly, discovery and development of therapeutics to completely stop HBV replication, eliminate or functionally inactivate cccDNA as well as activate a functional antiviral immune response against HBV are the primary efforts for finding a cure for chronic hepatitis B.
View Article and Find Full Text PDF