The antibiotic tetracycline (TC) significantly pollutes water bodies, adversely impacting ecosystems and human health. In this work, a bifunctional platform for simultaneous detection and removal of TC was successfully constructed by in-situ growth of Zr-MOF in BC microspheres. The in-situ growth ensured the stability, while the design of the aerogel microspheres improved the processability, convenience, and recyclability.
View Article and Find Full Text PDFThe widespread use of synthetic dyes has serious implications for both the environment and human health. Therefore, there is an urgent need for the development of novel, high-efficiency adsorbents for these dyes. In this study, a Zirconium-based metal-organic framework (MOF) with controllable morphology was in-situ grown on bacterial nanocellulose (BC) via a solvothermal method.
View Article and Find Full Text PDFElastic carbon aerogels have promising applications in the field of wearable sensors. Herein, a new strategy for preparing carbon aerogels with excellent compressive strength and strain, shape recovery, and fatigue resistance was proposed based on the structure design and carbonization optimization of nanocellulose-based precursor aerogels. By the combination of directional freezing and zinc ion cross-linking, bacterial cellulose (BC)/alginate (SA) composite aerogels with high elasticity and compressive strength were first achieved.
View Article and Find Full Text PDFElastic and hydrophobic aerogels have received a lot of attention in dealing with the increasing oil pollution due to their recyclable properties. Herein, we present an ultralight and superelastic aerogel with highly oriented polygon structure based on chitin nanofibril (ChNF) and chitosan (CS) by directional freezing. The chemical cross-linking enables good mechanical strength at low aerogel density.
View Article and Find Full Text PDF