The blurring around the link between the isobaric fragility and the characteristic size of cooperative rearranging region for glass-forming liquids has been cleared up by considering volumetric and thermal contributions of the structural relaxation. The measurement of these contributions is carried out for three amorphous thermoplastic polymers using broadband dielectric spectroscopy under pressure, providing an understanding of the link between isobaric fragilities, glass transition temperatures, and microstructures. The cooperative rearranging region (CRR) volume is calculated as a function of pressure using the extended Donth's approach, and the values are compared with the activation volume at the glass transition under different isobaric conditions.
View Article and Find Full Text PDFThe article is concerned with hybrid amorphous polymers synthesized basing on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol that was cured by polyethylene polyamine and lithium perchlorate salt. Structural peculiarities of organic-inorganic polymer composites were studied by differential scanning calorimetry, wide-angle X-ray spectra, infrared spectroscopic, scanning electron microscopy, elemental analysis, and transmission and reflective optical microscopy. On the one hand, the results showed that the introduction of LiClO salt into epoxy polymer leads to formation of the coordinative metal-polymer complexes of donor-acceptor type between central Li ion and ligand.
View Article and Find Full Text PDFUnlabelled: In the present work, ion-conductive hybrid organic-inorganic polymers based on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol (DEG) and lithium perchlorate (LiClO4) were synthesized. The effect of LiClO4 content on the electrophysical properties of epoxy polymers has been studied by differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS). The effect of LiClO4 content on the structure has been studied by wide-angle X-ray scattering (WAXS).
View Article and Find Full Text PDF