Publications by authors named "Liubov Lobanova"

Salivary melatonin is a clinically used biomarker for diagnosing circadian rhythm sleep disorders. Current melatonin detection assays are complex, expensive, and in many cases do not adequately measure low levels of salivary melatonin. Precisely measuring melatonin levels at multiple time points is crucial for determining dim light melatonin onset to evaluate its circadian fluctuation as well as the extent of circadian disruption and consequently adapt treatment regimens.

View Article and Find Full Text PDF

Circadian desynchrony with the external light-dark cycle influences the rhythmic secretion of melatonin which is among the first signs of circadian rhythm sleep disorders. An accurate dim light melatonin onset (established indicator of circadian rhythm sleep disorders) measurement requires lengthy assays, and antibody affinities alterations, especially in patients with circadian rhythm disorders whose melatonin salivary levels vary significantly, making antibodies detection mostly inadequate. In contrast, aptamers with their numerous advantages (e.

View Article and Find Full Text PDF

Tissue engineering offers a great potential in regenerative dentistry and to this end, three dimensional (3D) bioprinting has been emerging nowadays to enable the incorporation of living cells into the biomaterials (such a mixture is referred as a bioink in the literature) to create scaffolds. However, the bioinks available for scaffold bioprinting are limited, particularly for dental tissue engineering, due to the complicated, yet compromised, printability, mechanical and biological properties simultaneously imposed on the bioinks. This paper presents our study on the development of a novel bioink from carboxymethyl chitosan (CMC) and alginate (Alg) for bioprinting scaffolds for enamel tissue regeneration.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the coronavirus family that causes the novel coronavirus disease first diagnosed in 2019 (COVID-19). Although many studies have been carried out in recent months to determine why the disease clinical presentations and outcomes can vary significantly from asymptomatic to severe or lethal, the underlying mechanisms are not fully understood. It is likely that unique individual characteristics can strongly influence the broad disease variability; thus, tailored diagnostic and therapeutic approaches are needed to improve clinical outcomes.

View Article and Find Full Text PDF

Like humans, canine lymphomas are treated by chemotherapy cocktails and frequently develop multiple drug resistance (MDR). Their shortened clinical timelines and tumor accessibility make canines excellent models to study MDR mechanisms. Insulin-sensitizers have been shown to reduce the incidence of cancer in humans prescribed them, and we previously demonstrated that they also reverse and delay MDR development in vitro.

View Article and Find Full Text PDF

Enamel is the highest mineralized tissue in the body protecting teeth from external stimuli, infections, and injuries. Enamel lacks the ability to self-repair due to the absence of enamel-producing cells in the erupted teeth. Here, we reported a novel approach to promote enamel-like tissue formation via the delivery of a key ameloblast inducer, T-box1 gene, into a rat dental epithelial stem cell line, HAT-7, using non-viral gene delivery systems based on cationic lipids.

View Article and Find Full Text PDF

The internally driven 24-h cycle in humans, called circadian rhythm, controls physiological, metabolic, and hormonal processes, and is tied to the circadian clocks ticking in most of the cells and tissues. The central clock, located in suprachiasmatic nuclei of the hypothalamus, is directly influenced by external cues, particularly light, and entrains the peripheral clocks through neural and hormonal pathways to the external light-dark cycle. However, peripheral clocks also have self-sustained circadian rhythmicity and feeding is the potent synchronizer.

View Article and Find Full Text PDF

Background: Stromal interaction molecule 1 () is one of the main components of the store operated Ca entry (SOCE) signaling pathway. Individuals with mutated present severely hypomineralized enamel characterized as amelogenesis imperfecta (AI) but the downstream molecular mechanisms involved remain unclear. Circadian clock signaling plays a key role in regulating the enamel thickness and mineralization, but the effects of -mediated AI on circadian clock are unknown.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC), which encompasses the oral cavity-derived malignancies, is a devastating disease causing substantial morbidity and mortality in both men and women. It is the most common subtype of the head and neck squamous cell carcinoma (HNSCC), which is ranked the sixth most common malignancy worldwide. Despite promising advancements in the conventional therapeutic approaches currently available for patients with oral cancer, many drawbacks are still to be addressed; surgical resection leads to permanent disfigurement, altered sense of self and debilitating physiological consequences, while chemo- and radio-therapies result in significant toxicities, all affecting patient wellbeing and quality of life.

View Article and Find Full Text PDF

Multiple drug resistant (MDR) malignancy remains a predictable and often terminal event in cancer therapy, and affects individuals with many cancer types, regardless of the stage at which they were originally diagnosed or the interval from last treatment. Protein biomarkers of MDR are not globally used for clinical decision-making, but include the overexpression of drug-efflux pumps (ABC transporter family) such as MDR-1 and BCRP, as well as HIF1α, a stress responsive transcription factor found elevated within many MDR tumors. Here, we present the important in vitro discovery that the development of MDR (in breast cancer cells) can be prevented, and that established MDR could be resensitized to therapy, by adjunct treatment with metformin.

View Article and Find Full Text PDF

The SNF1 kinase in is an excellent model to study the regulation and function of the AMP-dependent protein kinase (AMPK) family of serine-threonine protein kinases. Yeast discoveries regarding the regulation of this non-hormonal sensor of metabolic/environmental stress are conserved in higher eukaryotes, including poly-ubiquitination of the α-subunit of yeast (Snf1) and human (AMPKα) that ultimately effects subunit stability and enzyme activity. The ubiquitin-cascade enzymes responsible for targeting Snf1 remain unknown, leading us to screen for those that impact SNF1 kinase function.

View Article and Find Full Text PDF

The CLCA gene family produces both secreted and membrane-associated proteins that modulate ion-channel function, drive mucus production and have a poorly understood pleiotropic effect on airway inflammation. The primary up-regulated human CLCA ortholog in airway inflammation is hCLCA1. Here we show that this protein can activate airway macrophages, inducing them to express cytokines and to undertake a pivotal role in airway inflammation.

View Article and Find Full Text PDF

Despite the availability of live attenuated measles virus (MV) vaccines, a large number of measles-associated deaths occur among infants in developing countries. The development of a measles subunit vaccine may circumvent the limitations associated with the current live attenuated vaccines and eventually contribute to global measles eradication. Therefore, the goal of this study was to test the feasibility of producing the recombinant globular head domain of the MV hemagglutinin (H) protein by stably transfected human cells and to examine the ability of this recombinant protein to elicit MV-specific immune responses.

View Article and Find Full Text PDF

Several problems associated with the available anti-measles vaccine emphasize the need for a single shot anti-measles vaccine which is efficacious by mucosal route of administration and functional in the presence of anti-measles neutralizing antibodies. To achieve these goals, we constructed two recombinant human adenoviruses (collectively designated Ad-F/H) carrying genes for measles virus (MV) fusion (F) and haemagglutinin (H) proteins. Single intranasal or intramuscular vaccination of mice and cotton rats with Ad-F/H elicited high MV-specific serum neutralizing-antibody titers.

View Article and Find Full Text PDF