Publications by authors named "Liu-Cheng Yang"

Background: Williams-Beuren syndrome, Noonan syndrome, and Alagille syndrome are common types of genetic syndromes (GSs) characterized by distinct facial features, pulmonary stenosis, and delayed growth. In clinical practice, differentiating these three GSs remains a challenge. Facial gestalts serve as a diagnostic tool for recognizing Williams-Beuren syndrome, Noonan syndrome, and Alagille syndrome.

View Article and Find Full Text PDF

Chitosan acts as a versatile carrier in polymeric nanoparticle (NP) for diverse drug administration routes. Delivery of antioxidants, such as quercetin (Qu) showcases potent antioxidant and anti-inflammatory properties for reduction of various cardiovascular diseases, but low water solubility limits uptake. To address this, we developed a novel layer-by-layer zein/gamma-polyglutamic acid (γPGA)/low-molecular-weight chitosan (LC)/fucoidan NP for encapsulating Qu and targeting inflamed vessel endothelial cells.

View Article and Find Full Text PDF

Trapping and manipulating mesoscopic biological cells with high precision and flexibility are very important for numerous biomedical applications. In particular, a photonic nanojet based on a non-resonance focusing phenomenon can serve as a powerful tool for manipulating red blood cells and tumor cells in blood. In this study, we demonstrate an approach to trap and drive cells using a high-quality photonic nanojet which is produced by a specific microcone-shaped optical-fiber tip.

View Article and Find Full Text PDF

Low-molecular-weight chitosan (LMWCS) damaged cell membranes in zebrafish showed its possibility to release reporter proteins for detection. In this study, we developed a simple fluorometric-based assay for the evaluation of clinical antiangiogenic drugs using LMWCS and Tg(fli1:EGFP) transgenic zebrafish, which expressed green-fluorescence protein (GFP) in the endothelial cells of blood vessel. In vitro stable and transiently transfected cell lines was released luciferase and green fluorescent protein (GFP) for intensity evaluation upon LMWCS fluorometric-based assay.

View Article and Find Full Text PDF

The development of all-dielectric structures with high magnetic response at optical frequencies has become a matter of intense study in past years. However, magnetic effects are weak at optical frequencies due to the small value of the magnetic permeability of natural materials. To this end, natural dielectric materials are unemployable for practical “magnetic” applications in optics.

View Article and Find Full Text PDF

Various optical components employed in biomedical applications have been fabricated using spider silk because of its superior properties, such as elasticity, tensile strength, biodegradability, and biocompatibility. In this study, a highly sensitive fiber optic sugar sensor is fabricated using metal-nanolayer-coated spider silk. The spider silk, which is directly collected from , a giant wood spider, is naturally a protein-based biopolymer with great flexibility, low attenuation, and easy functionalization.

View Article and Find Full Text PDF

The receptor-binding domain (RBD) of the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the human angiotensin-converting enzyme 2 (ACE2) receptor, which is a prerequisite for the virus to enter the cell. C-reactive protein (CRP) is an important marker of inflammation and is a putative soluble pattern recognition receptor. Clinical elevation of CRP levels in patients with COVID-19 is one of the characteristics of the disease; however, whether CRP is involved in COVID-19 pathogenesis is unknown.

View Article and Find Full Text PDF

In this Letter, we propose a new, to the best of our knowledge, proof-of-concept of optical nano-tweezers based on a pair of dielectric rectangular structures that are capable of generating a finite-volume in-plane optical capsule. Finite-difference time-domain simulations of light spatial distributions and optical trapping forces of a gold nanoparticle immersed in water demonstrate the physical concept of an in-plane subwavelength optical capsule integrated with a microfluidic mesoscale device. It is shown that the refractive index of and the distance between the two dielectric rectangular structures can effectively control the shape and axial position of the optical capsule.

View Article and Find Full Text PDF

Many challenges, such as virus infection, extreme weather and long cultivation periods, during the development of fish larvae have been observed, especially in aquaculture. Gene delivery is a useful method to express functional genes to defend against these challengers. However, the methods for fish larvae are insufficient.

View Article and Find Full Text PDF

Photonic hooks have demonstrated to be great candidates for multiple applications ranging from sensing up to optical trapping. In this work, we propose a mechanism to produce such bent structured light beams by exploiting the diffraction and scattering generated by a pair of dielectric rectangles immersed in free space. It is shown how the photonic hooks are generated away from the output surface of the dielectrics by correctly engineering each individual dielectric structure to generate minimum diffraction and maximum scattering along the propagation axis.

View Article and Find Full Text PDF

In this Letter, we report on a numerical study, fabrication, and experimental observations of photonic nanojet (PNJ) shaping by control of a tangential electric field component. Here the PNJs are generated by a single mesoscale micro-cube that is fabricated from polydimethylsiloxane, deposited on a silicon substrate and placed on thick metal screen at illuminating wavelengths of 405, 532, and 671 nm. It is shown that the length, focal length, and width of the PNJ can be significantly reduced in the presence of the metal masks along the side faces of the micro-cube.

View Article and Find Full Text PDF

Islet transplantation (IT) is considered the most effective endocrine replacement therapy for diabetes mellitus (DM). Studies have demonstrated that IT can repair testicular structural injury caused by inflammatory and oxidative stress in a diabetic rat model. However, highly effective exogenous antioxidant and anti-inflammatory drugs can achieve this effect.

View Article and Find Full Text PDF

Structured light have made deep impacts on modern biotechnology and clinical practice, with numerous optical systems and lasers currently being used in medicine to treat disease. We demonstrate a new concept of fiber-based optical hook scalpel. The subwavelength photonic hook is obtained in the vicinity of a shaped fiber tip with asymmetric radiation.

View Article and Find Full Text PDF

In this Letter, we report the experimental observations of a tunable curved photonic nanojet (photonic hook) generated by a 5 µm polydimethylsiloxane microcylinder deposited on a silicon substrate and illuminated by 405 nm laser beam. A moveable opaque aluminum-mask is mounted in front of the microcylinder implementing partial illumination and imparting spatial curvature to the photonic nanojet. Experimental results of main parameters (tilt angle, width, and intensity) of emerging photonic hooks exhibit close agreement with numerical predictions of the near-field optical structures.

View Article and Find Full Text PDF

In this work, we experimentally demonstrate that a thin rectangle dielectric-metal structure can have a function of a flat focusing mirror based on photonic jet effect in reflection mode. Using polydimethylsiloxane (PDMS) rectangle with size length of 10 μm and wavelength-scale thickness of 1 μm on the top of a silicon wafer, we have built a flat mirror which focuses an incident beam at the focal length changing from 1.38 μm to 11.

View Article and Find Full Text PDF

In this Letter, the direct generation of twin photonic nanojets (PNJs) through two coherent illuminations of a microcylinder is investigated theoretically and experimentally. The dielectric microcylinder (polydimethylsiloxane) with 5 μm diameter and 6 μm height is employed to generate symmetric twin PNJs. The finite-difference time-domain calculation is used to simulate the electric field distributions inside and outside the microcylinder.

View Article and Find Full Text PDF

The photonic nanojet is a highly concentrated beam with low divergence on the shadow side of dielectric microparticles. In this Letter, we first theoretically and experimentally investigate the formation of high-quality photonic nanojets by decorating spider silk. The dragline silks are directly extracted from cellar spiders and capable of efficiently collecting ultraviolet cure adhesive.

View Article and Find Full Text PDF

Probe rheology experiments, in which the dynamics of a small amount of probe chains dissolved in immobile matrix chains is discussed, have been performed for the development of molecular theories for entangled polymer dynamics. Although probe chain dynamics in probe rheology is considered hypothetically as single chain dynamics in fixed tube-shaped confinement, it has not been fully elucidated. For instance, the end-to-end relaxation of probe chains is slower than that for monodisperse melts, unlike the conventional molecular theories.

View Article and Find Full Text PDF

We first experimentally evaluate the direct imaging of photonic nanojets from core-shell microcylinders. The optimal photonic nanojet with long length, a high intensity spot, and low divergence is observed at the designed gold-silver-coating microcylinder. A special microcylinder consists of multilayered metallic shells (gold, silver, and copper) and a dielectric core (polydimethylsiloxane) at a diameter of 5 μm and a height of 6 μm.

View Article and Find Full Text PDF

The formation of photonic jets produced by dielectric micro cuboids is reported. The spatial electromagnetic field has been numerically analyzed on the basis of the finite-difference time-domain calculation. The characteristics of photonic jets, such as propagation length and location, can be drastically changed by controlling the cuboid dimensions.

View Article and Find Full Text PDF

Ca-alginate-poly-l-lysine-alginate (APA-Ca) and Ba-alginate-poly-l-lysine-alginate (APA-Ba) microcapsules were prepared and their thickness and surface were examined by light microscopy and scanning electron microscopy. Specifically, light microscopy with frozen section was used to visualize and quantify the thickness of APA membrane, and monitor temporal changes in the thickness of microcapsules during a month long culture in vitro. The section graph of APA microcapsule represents the accurate measurement of layer thickness of APA-Ca with diameter 900 ± 100 and 500 ± 100 μm at 6.

View Article and Find Full Text PDF

The study investigates a capacitive micro pressure sensor integrated with a ring oscillator circuit on a chip. The integrated capacitive pressure sensor is fabricated using the commercial CMOS (complementary metal oxide semiconductor) process and a post-process. The ring oscillator is employed to convert the capacitance of the pressure sensor into the frequency output.

View Article and Find Full Text PDF