The development of efficient and robust catalysts for hydrogen evolution reaction is crucial for advancing the hydrogen economy. In this study, we demonstrate that ultra-low coordinated hollow PtRuNi-O nanocages exhibit superior catalytic activity and stability across varied conditions, notably surpassing commercial Pt/C catalysts. Notably, the PtRuNi-O catalysts achieve current densities of 10 mA cm at only 19.
View Article and Find Full Text PDFElectrocatalysis is a very attractive way to achieve a sustainable carbon cycle by converting CO into organic fuels and feedstocks. Therefore, it is crucial to design advanced electrocatalysts by understanding the reaction mechanism of electrochemical CO reduction reaction (eCORR) with multiple electron transfers. Among electrocatalysts, dual-atom catalysts (DACs) are promising candidates due to their distinct electronic structures and extremely high atomic utilization efficiency.
View Article and Find Full Text PDFEfficient dual-single-atom catalysts are crucial for enhancing atomic efficiency and promoting the commercialization of fuel cells, but addressing the sluggish kinetics of hydrogen oxidation reaction (HOR) in alkaline media and the facile dual-single-atom site generation remains formidable challenges. Here, we break the local symmetry of ultra-small ruthenium (Ru) nanoparticles by embedding cobalt (Co) single atoms, which results in the release of Ru single atoms from Ru nanoparticles on reduced graphene oxide (Co Ru /rGO). In situ operando spectroscopy and theoretical calculations reveal that the oxygen-affine Co atom disrupts the symmetry of ultra-small Ru nanoparticles, resulting in parasitic Ru and Co dual-single-atom within Ru nanoparticles.
View Article and Find Full Text PDFRu-related catalysts have shown excellent performance for the hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR); however, a deep understanding of Ru-active sites on a nanoscale heterogeneous support for hydrogen catalysis is still lacking. Herein, a click chemistry strategy is proposed to design Ru cluster-decorated nanometer RuFeO heterointerfaces (Ru/RuFeO) as highly effective bifunctional hydrogen catalysts. It is found that introducing Ru into nanometric FeO species breaks the symmetry configuration and optimizes the active site in Ru/RuFeO for HER and HOR.
View Article and Find Full Text PDFThe fear effect is a powerful force in prey-predator interaction, eliciting a variety of anti-predator responses which lead to a reduction of prey growth rate. To study the impact of the fear effect on population dynamics of the eco-epidemiological system, we develop a predator-prey interaction model that incorporates infectious disease in predator population as well as the cost of anti-predator behaviors. Detailed mathematical results, including well-posedness of solutions, stability of equilibria and the occurrence of Hopf bifurcation are provided.
View Article and Find Full Text PDFBenefitting from the maximum atom utilization efficiency, special size quantum effects and tailored active sites, single-atom catalysts (SACs) have been promising candidates for bifunctional catalysts toward water splitting. Besides, due to the unique structure and properties, some amorphous materials have been found to possess better performance than their crystalline counterparts in electrocatalytic water splitting. Herein, by combining the advantages of ruthenium (Ru) single atoms and amorphous substrates, amorphous molybdenum-based oxide stabilized single-atomic-site Ru (Ru SAs-MoO /NF) catalysts are conceived as a self-supported electrode.
View Article and Find Full Text PDFLithium-Sulfur batteries (LSBs) have been considered as a promising candidate for the next generation of energy storage systems due to their high theoretical capacity. However, there are still lots of pending scientific and technological issues to be solved. Framework materials show great potential to address the above-mentioned issues due to the highly ordered distribution of pore sizes, effective catalytic activity, and periodically arranged aperture.
View Article and Find Full Text PDFAs a porous and network materials consisting of metals and organic ligands, metal-organic frameworks (MOFs) have become one of excellent crystalline porous materials and play an important role in the era about materials science. Plasma, as a useful tool for stimulating efficient reactions under many conditions, and the plasma-assisted technology gets more attractions and endows MOFs more properties. Based on its feature, the research about the modifications and functionalities of MOFs have been developing a certain extent.
View Article and Find Full Text PDFThe coordination environment of Ru centers determines their catalytic performance, however, much less attention is focused on cluster-induced charge transfer in a Ru single-atom system. Herein, by density functional theory (DFT) calculations, a competitive coordination-pairing between Ru clusters (RuRu bond) and single-atoms (RuO bond) is revealed leading to the charge redistribution between Ru and O atoms in ZnFe O units which share more free electrons to participate in the hydrogen desorption process, optimizing the proton adsorption and hydrogen desorption. Thus, a clicking confinement strategy for building a competitive coordination-pairing between Ru clusters and single-atoms anchored on ZnFe O nanosheets over carbon via RuO ligand (Ru -ZnFe O -C) is proposed.
View Article and Find Full Text PDFBMC Bioinformatics
May 2022
Background: Lung cancer is one of the cancers with the highest mortality rate in China. With the rapid development of high-throughput sequencing technology and the research and application of deep learning methods in recent years, deep neural networks based on gene expression have become a hot research direction in lung cancer diagnosis in recent years, which provide an effective way of early diagnosis for lung cancer. Thus, building a deep neural network model is of great significance for the early diagnosis of lung cancer.
View Article and Find Full Text PDFThe density functional theory calculation results reveal that the adjacent defect concentration and electronic spin state can effectively activate the Co sites in the atomically thin nanosheets, facilitating the thermodynamic transformation of *O to *OOH, thus offering ultrahigh charge transfer properties and efficiently stabilizing the phase. This undoubtedly evidences that, for metal sulfides, the atom-scale cation/anion vacancy pair and surface electronic spin state can play a great role in enhancing the oxygen evolution reaction. Inspired by the theoretical prediction, interconnected selenium (Se) wired ultrathin Co S (Se -Co S ) nanosheets with Co/S (Se) dual-vacancies (Se -Co S -V -V ) pairs are constructed by a simple approach.
View Article and Find Full Text PDFBackground: Cytokine-induced killer cells (CIKs) adoptive cell transfer (ACT) is a common malignant tumor treatment method. Interleukin-2 (IL-2) is one of the essential cytokines for CIKs cultures. In different phase of CIKs (quiescent and exponential growth), due to different active states and IL-2R expression of the CIKs surface, different doses of IL-2 are required.
View Article and Find Full Text PDFTransition metal hydroxides are a kind of promising electrode material in electrochemical energy storage, but the poor conductivity limits their application. Lanthanides are good proton conductors and can usually improve the intrinsic conductivity of other materials. By integrating the merits of lanthanide elements and transition metal hydroxide, we designed lanthanum oxide nickel hydroxide composites (LONH) with unique ultrathin triangle nanosheet morphology via a controllable synthetic strategy for high-performance supercapacitors.
View Article and Find Full Text PDFIdentification and accurate quantitation of host cell proteins (HCPs) in biotherapeutic drugs has become increasingly important due to the negative impact of certain HCPs on the safety, stability, and other product quality of biotherapeutics. Recently, several lipase HCPs have been identified to potentially cause the enzymatic degradation of polysorbate, a widely used excipient in the formulation of biotherapeutics, which can severely impact the stability and product quality of drug products. In this study, we identified three lipase HCPs that were frequently detected in Chinese hamster ovary (CHO) cell cultures using shotgun proteomics, including phospholipase B-like 2 (PLBL2), lipoprotein lipase (LPL), and lysosomal acid lipase (LIPA).
View Article and Find Full Text PDFHost cell proteins (HCPs) are process-related impurities that may copurify with biopharmaceutical drug products. Within this class of impurities there are some that are more problematic. These problematic HCPs can be considered high-risk and can include those that are immunogenic, biologically active, or enzymatically active with the potential to degrade either product molecules or excipients used in formulation.
View Article and Find Full Text PDFThe state of an infectious disease can represent the degree of infectivity of infected individuals, or susceptibility of susceptible individuals, or immunity of recovered individuals, or a combination of these measures. When the disease progression is long such as for HIV, individuals often experience switches among different states. We derive an epidemic model in which infected individuals have a discrete set of states of infectivity and can switch among different states.
View Article and Find Full Text PDFCombination antiretroviral therapy (cART) has greatly increased life expectancy for human immunodeficiency virus-1 (HIV-1)-infected patients. Even given the remarkable success of cART, the virus persists in many different cells and tissues. The presence of viral reservoirs represents a major obstacle to HIV-1 eradication.
View Article and Find Full Text PDFElectrocatalysis of the hydrogen evolution reaction (HER) is a vital and demanding, yet challenging, task to produce clean energy applications. Here, the RuRh bimetallene nanoring with rich structural defects is designed and successfully synthesized by a mixed-solvent strategy, displaying ascendant HER performance with high mass activity at -0.05 and -0.
View Article and Find Full Text PDFEmerg Microbes Infect
December 2020
Influenza B virus (IBV) is one of the most important human respiratory viruses: it causes approximately one-third of the global influenza-related disease burden each year. However, compared with the several pathogenicity-related molecular markers that have been identified for influenza A virus (IAV), little is known about potential IBV pathogenicity-related markers. Here, although the IBV strain B/Anhui-Tunxi/1528/2014 (AH1528/14) exhibited a more efficient replication ability and higher pathogenicity compared with IBV strain B/Anhui-Baohe/127/2015 (AH127/15), only three amino acids differences (HA, NA and PB1) were observed among their full genomes.
View Article and Find Full Text PDFDefect engineering is widely applied in transition metal dichalcogenides to produce high-purity hydrogen. However, the instability of vacancy states on catalysis still remains a considerable challenge. Here, our first-principles calculations showed that, by optimizing the asymmetric S vacancy in the highly asymmetric 1T' crystal of layered bitransition metal dichalcogenides (Co-MoS2) in light of Pd modulation, the relative amount of metastable phase and the quantity of active sites in the structure can be reduced and increased, respectively, leading to a further boosted hydrogen evolution reaction (HER) activity toward layered bi-transition metal dichalcogenides.
View Article and Find Full Text PDFLow-cost and highly effective catalysts are crucial to the electrocatalytic hydrogen evolution reaction (HER). Among non-noble catalysts, molybdenum carbides are promising candidates because of their high reserves, stability, low cost, and structural diversity. In this work, we report a simple method to fabricate a hollow porous MoC@C nanoball through a hydrothermal preparation process of molybdenum precursors at high temperatures.
View Article and Find Full Text PDFAntibody charge heterogeneity is one of the major product-related variants in recombinant biopharmaceuticals, which has been commonly monitored by imaged capillary isoelectric focusing (icIEF). Due to the challenges with sample recovery and fractionation, other charge-based analytical approaches have been explored as complementary methods allowing for further detailed charge variant characterization. This study describes the utilization of free flow electrophoresis (FFE) fractionation in combination with other analytical techniques, such as mass spectrometry for monoclonal antibody acidic variants characterization.
View Article and Find Full Text PDF