Biomineralization of enzymes inside rigid metal-organic frameworks (MOFs) is appealing due to its biocompatibility and simplicity. However, this strategy has hitherto been limited to microporous MOFs, leading to low apparent enzymatic activity. In this study, polysaccharide sodium alginate is introduced during the biomineralization of enzymes in zeolitic imidazolate frameworks (ZIFs) to competitively coordinate with metal ions, which endows the encapsulated enzyme with a 7-fold higher activity than that in microporous ZIFs.
View Article and Find Full Text PDFFor metal-free low-dimensional ferromagnetic materials, a hopeful candidate for next-generation spintronic devices, investigating their magnetic mechanisms and exploring effective ways to regulate their magnetic properties are crucial for advancing their applications. Our work systematically investigated the origin of magnetism of a graphitic carbon nitride (Pca21 CN) monolayer based on the analysis on the partial electronic density of states. The magnetic moment of the Pca21 CN originates from the spin-split of the 2 orbit from special carbon (C) atoms and 2 orbit from N atoms around the Fermi energy, which was caused by the lone pair electrons in nitrogen (N) atoms.
View Article and Find Full Text PDFBackground: Childhood obesity has become a global pandemic, leading to a range of diseases. Childhood obesity appears to be associated with an increased prevalence of sleep apnea syndrome. Sleep apnea is an inestimable risk factor for thrombosis, hypertension, cardiomyopathy and many other diseases.
View Article and Find Full Text PDFObjectives: Porphyromonas gingivalis (P. gingivalis) is a keystone periodontal pathogen associated with various gastro-intestinal tract cancers. However, whether P.
View Article and Find Full Text PDFBackground: African cattle represent a unique resource of genetic diversity in response to adaptation to numerous environmental challenges. Characterising the genetic landscape of indigenous African cattle and identifying genomic regions and genes of functional importance can contribute to targeted breeding and tackle the loss of genetic diversity. However, pinpointing the adaptive variant and determining underlying functional mechanisms of adaptation remains challenging.
View Article and Find Full Text PDFRhodopseudomonas palustris immobilized on multiple materials was used to invistigate Cr(VI) adsorption and bioreduction. The highest Cr(VI) removal (97.5%) was achieved at 276h under the opitimed conditions of 2.
View Article and Find Full Text PDFThe bacteria-algae synergistic wastewater treatment process not only efficiently eliminates nutrients and absorbs heavy metals, but also utilizes photosynthesis to convert light energy into chemical energy, generating valuable bioresource. The study systematically explores the formation, algal species, and regulatory strategies of the bacterial-algal symbiosis system. It provides a detailed analysis of various interaction mechanisms, with a particular focus on nutrient exchange, signal transduction, and gene transfer.
View Article and Find Full Text PDFHeavy metals have been considered an evolving environmental concern due to their harmful and long-lasting impacts. We synthesized a composite of FeS/CS@MIBWS for aqueous Cr(vi) adsorption and reduction utilizing the iron-based waterworks sludge modified by chitosan and FeS. After determining the optimal conditions for the FeS/CS@MIBWS preparation, its Cr(vi) removal capability was evaluated using material characterisation and static Cr(vi) adsorption assays.
View Article and Find Full Text PDFDysregulated Epiregulin (EREG) can activate epidermal growth factor receptor (EGFR) and promote tumor progression in head and neck squamous cell carcinoma (HNSCC). However, the mechanisms underlying EREG dysregulation remain largely unknown. Here, we showed that dysregulated EREG was highly associated with enhanced PDL1 in HNSCC tissues.
View Article and Find Full Text PDFUtilizing hydrogen as a viable substitute for fossil fuels requires the exploration of hydrogen storage materials with high capacity, high quality, and effective reversibility at room temperature. In this study, the stability and capacity for hydrogen storage in the Sc-modified CN nanotube are thoroughly examined through the application of density functional theory (DFT). Our finding indicates that a strong coupling between the Sc-3d orbitals and N-2p orbitals stabilizes the Sc-modified CN nanotube at a high temperature (500 K), and the high migration barrier (5.
View Article and Find Full Text PDFThe production of short-chain fatty acids (SCFAs) is constrained by substrate availability and the increased fractional pressure of H emitted by acidogenic/fermentative bacteria during anaerobic fermentation of waste activated sludge (WAS). This study introduced a novel approach employing zero-valent iron (ZVI)-activated sulfite pretreatment combined with H-consuming sulfate-reducing bacteria (SRB) mediation to improve SCFAs, especially acetate production from WAS fermentation. Experimental results showed that the combined ZVI-activated sulfite and incomplete-oxidative SRB (io-SRB) process achieved a peak SCFAs production of 868.
View Article and Find Full Text PDFThe production of municipal sludge is steadily increasing in line with the production of sewage. A wealth of organic contaminants, including nutrients and energy, are present in municipal sludge. Anaerobic fermentation can be used to extract useful resources from sludge, producing hydrogen, methane, short-chain fatty acids, and, via further chain elongation, medium-chain fatty acids.
View Article and Find Full Text PDFBackground: Human papillomavirus (HPV) integration into the host genome is an important factor in HPV(+)OPSCC carcinogenesis, in conjunction with HPV oncoproteins E6/E7. However, a well-studied investigation about virus-host interaction still needs to be completed. Our objective is to characterise HPV integration to investigate potential mechanisms of tumourigenesis independent of E6/E7 oncoproteins.
View Article and Find Full Text PDFA heterobifunctional cross-linker with one sulfhydryl-reactive dinitroimidazole end and another amine-reactive -hydroxysuccinimide (NHS) ester end was designed and synthesized. The two motifs of this cross-linker, dinitroimidazole and NHS ester, proved to react with thiol and amine, respectively, in an orthogonal way. The cross-linker was further applied to construct stapled peptides of different sizes and mono- and dual functionalization (including biotinylation, PEGylation, and fluorescence labeling) of protein.
View Article and Find Full Text PDFObjectives: Antiangiogenic inhibitors have been shown to synergize with immune checkpoint blockade, but the underlying mechanisms of the synergistic response are not fully understood.
Patients And Methods: We investigate the impact of VEGFR2 inhibition on tumor-infiltrating immune cells in vivo and the activity of the combination of apatinib and anti-PD-1 in synergistic mouse model of HNSCC. A patient with squamous cell carcinoma of the left tongue with cervical lymph node were received with combined induction treatment of camrelizumab and apatinib to validate the efficacy of neoadjuvant immunotherapy before surgery.
Enzymes achieve high catalytic activity with their elaborate arrangements of amino acid residues in confined optimized spaces. Nevertheless, when exposed to complicated environmental implementation scenarios, including high acidity, organic solvent and high ionic strength, enzymes exhibit low operational stability and poor activity. Here, we report a metal-organic frameworks (MOFs)-based artificial enzyme system via second coordination sphere engineering to achieve high hydrolytic activity under mild conditions.
View Article and Find Full Text PDF