The rhizosphere priming effect (RPE) caused by carbon inputs from crop rhizodeposits plays a key role in regulating the carbon emission flux and carbon balance of farmland soils. Due to frequent alternations between dry and wet conditions, CO and CH emissions and the RPE in paddy field ecosystems are significantly different to those of other ecosystems. Therefore, it is of great significance to determine the direction and intensity of the rice RPE under alternations of dry and wet to limit greenhouse gas emissions.
View Article and Find Full Text PDFThe variation characteristics of ecological stoichiometric ratios can reflect the nature of plant adaptation to environmental changes. The C, N, and P contetns, and their stoichiometric ratios in different organs of rice were studied using a CO continuous labeling system, by simulating the increase of atmospheric CO concentration (800×10). The results showed that CO doubling promoted the growth of rice organs and increased the root/shoot ratio.
View Article and Find Full Text PDFA rice pot experiment was conducted to investigate the effect of phosphorus addition on the abundance of autotrophic CO-fixation microorganisms using phosphorus-limited paddy soil from the Changsha Observation and Research Station for the Agricultural Environment. Rice seedlings were transplanted in the paddy soil with or without phosphorus addition, corresponding to P-treated-pot (P) or control pot (CK), respectively. Rhizosphere soils were collected from the P and CK treatments during the tillering and shooting stages.
View Article and Find Full Text PDFDue to the large area of Cd-contaminated paddy soils worldwide, low-cost measures to reduce the accumulation of Cd in rice plant are necessary. A field experiment was therefore conducted to investigate the reducing effect of lime combined with foliar applications of Zn (ZnSO) or Fe (EDTA·NaFe) on Cd concentrations in brown rice on a Cd-contaminated paddy soil. The results indicated that liming alone or in combination with foliar sprays of Zn or Fe increased the soil pH by 0.
View Article and Find Full Text PDFTo mitigate the serious problem of Cd-contaminated paddy soil, we investigated the remediation potential of combining in-situ immobilization with a low-Cd-accumulation rice cultivar. A three-season field experiment compared the soil pH, available Cd and absorption of Cd by three rice cultivars with different Cd accumulation abilities grown in Cd-contaminated paddy soil amended with lime (L), slag (S), and bagasse (B) alone or in combination. The three amendments applied alone and in combination significantly increased soil pH, reduced available Cd and absorption of Cd by rice with no effect on grain yield.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2015
When grown on Cd-contaminated soil, rice typically accumulates considerable Cd in straw, and which may return to the soil after harvest. This work was undertaken to assess the pollution risk of Cd associated to the Cd-contaminated rice straw after incorporating into an uncontaminated soil. With the Cd-contaminated rice straw added at 0, 1, 2, 3, 4 and 5 % (w/w), an incubation experiment (28 days) with non-planting and a followed pot experiment sequent with two planting (rice and Chinese cabbage, transplanted after 28-day incubation) were carried out to investigate the changes of soil Cd speciation and phytoavailability.
View Article and Find Full Text PDFSoil microbe plays an essential role in terrestrial ecosystem through its role in cycling mineral compounds and decomposing organic matter. The objective of this paper is to determine the influences of different land use patterns on soil microbial activity and community structure, which were analyzed by phospholipids fatty acid (PLFA) and MicroResp method, based on a long-term fertilization experiment in Taoyuan County, Hunan Province. There were three land use patterns included, i.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
November 2007