Publications by authors named "Liu Junyan"

Cardiac metabolism relies on glycogen conversion by glycolysis. Glycolysis intersects fatty acid oxidation and often directs a signal crosstalk between redox metabolites. Myocardium with ischemia/reperfusion significantly diverts from normal metabolism.

View Article and Find Full Text PDF

Nervous system diseases represent a significant global burden, affecting approximately 16% of the world's population and leading to disability and mortality. These conditions, encompassing both central nervous system (CNS) and peripheral nervous system (PNS) disorders, have substantial social and economic impacts. Metformin, a guanidine derivative derived from a plant source, exhibits therapeutic properties in various health conditions such as cancer, aging, immune-related disorders, polycystic ovary syndrome, cardiovascular ailments, and more.

View Article and Find Full Text PDF

Animals have evolved pH-sensing membrane receptors, such as G-protein-coupled receptor 4 (GPR4), to monitor pH changes related to their physiology and generate adaptive reactions. However, the evolutionary trajectory and structural mechanism of proton sensing by GPR4 remain unresolved. Here, we observed a positive correlation between the optimal pH of GPR4 activity and the blood pH range across different species.

View Article and Find Full Text PDF

Background: Disproportionately enlarged subarachnoid space hydrocephalus (DESH) is one of the neuroradiological characteristics of idiopathic normal pressure hydrocephalus (iNPH), which makes statistical analyses of brain images difficult. This study aimed to develop and validate methods of accurate brain segmentation and spatial normalisation in patients with DESH by using the Computational Anatomy Toolbox (CAT12).

Methods: Two hundred ninety-eight iNPH patients with DESH and 25 healthy controls (HCs) who underwent cranial MRI were enrolled in this study.

View Article and Find Full Text PDF

The waste Lentinus edodes stalks from Lentinus edodes processing were used as raw materials by the steam explosion to prepare modified Lentinus edodes stalks dietary fiber and combined with tea polyphenols to form the SE-DF-tea polyphenols complex (SE-DF-TPC). The SE-DF-tea polyphenols mixture (SE-DF-TPM) was prepared according to the complex's optimal adsorption conditions. Fluorescence microscopy, Fourier transform infrared spectroscopy, particle size measurement, thermogravimetric analysis, and X-ray diffraction were used to analyze its structure, and the thermal stability of the complex and its adsorption capacity for lipids, cholesterol, and cholates were studied.

View Article and Find Full Text PDF

Reduced mitochondrial quality and quantity in tumors is associated with dedifferentiation and increased malignancy. However, it remains unclear how to restore mitochondrial quantity and quality in tumors, and whether mitochondrial restoration can drive tumor differentiation. Our study shows that restoring mitochondrial function using retinoic acid (RA) to boost mitochondrial biogenesis and a mitochondrial uncoupler to enhance respiration synergistically drives neuroblastoma differentiation and inhibits proliferation.

View Article and Find Full Text PDF

Background: Telomerase reverse transcriptase (TERT) is a catalytic subunit of telomerase and required for cancer development. This study aims to reveal its clinical utility for diagnosis and prognosis of resectable NSCLC.

Methods: TERT was quantitatively evaluated by the enzyme-linked immunosorbent assay (ELISA) from 69 patients before and after the surgery.

View Article and Find Full Text PDF

Breast cancer (BC) is a common malignant tumor in women and requires a comprehensive understanding of its pathogenesis for the development of new therapeutic strategies. Polyunsaturated fatty acids (PUFAs) metabolism-driven inflammation is a causative factor in cancer development. However, the function of PUFAs' metabolism in BC remains largely unknown.

View Article and Find Full Text PDF

Accurate acetaminophen (APAP) determination using smartphone-based portable sensing hinges on developing sensing interfaces with effective catalytic performance and high electron transfer efficiency. Herein, we report that various Ni-based bimetallic-organic framework materials (MOFs) were synthesized through the hydrothermal method. These MOFs were incorporated with multiwalled carbon nanotubes (MWCNTs) during the synthesis of chitosan-cationic guar gum hydrogels (HG).

View Article and Find Full Text PDF

An interzeolite conversion (IZC) method was developed for the rapid synthesis of Cu-SAPO-34 from SAPO-37, achieving isolated Si distribution and optimized Cu states. The resulting Cu-SAPO-34 exhibited exceptional NH-SCR performance, with over 90% NO conversion from 200-600 °C due to proper acidity and Cu status generated from the isolated Si.

View Article and Find Full Text PDF

Although understanding the wetting behavior of solid surfaces is crucial for numerous engineering applications, the mechanisms driving the motion of Wenzel drops on rough surfaces remain incompletely clarified. In this study, the contact angle and contact angle hysteresis of Wenzel drops on superhydrophobic surfaces are investigated from a thermodynamic perspective. The free energy of the system is theoretically analyzed, thereby determining the equilibrium contact angle.

View Article and Find Full Text PDF

Lead halide perovskites are renowned for their exceptional optoelectronic properties but face concerns over lead toxicity and stability, which drives the exploration of lead-free perovskites, with CsAgBiBr standing out as a benchmark alternative. Understanding the structural dynamics and thermal transport properties of CsAgBiBr is crucial but remains an outstanding challenge due to the complex atomic fluctuations. Here, through diffuse scattering experiments and simulations, we uncover the underlying dynamic local structure in CsAgBiBr, showing a unique two-dimensional spatial correlation.

View Article and Find Full Text PDF
Article Synopsis
  • A 2D flexible hydrogel (GO/CNF) is created by combining graphene oxide (GO) with cellulose nanofiber (CNF) using microwave-assisted hydrothermal methods, resulting in a superhydrophilic material with a layered structure.
  • * The optimal mass ratio of GO to CNF is 3:1, leading to a specific capacitance of 295 F/g and improved electrochemical performance when used as free-standing electrodes in a three-electrode system.
  • * The enhanced properties of the hydrogel, especially at a press pressure that increases hydrophilicity, suggest its potential for use in flexible solid-state supercapacitors, wearable electronics, and biological signal detection with a high energy density of 20.6
View Article and Find Full Text PDF

Osteoarthritis (OA) is a degenerative disease that affects the entire joint, with synovial inflammation being a major pathological feature. Macrophages, as the most abundant immune cells in the synovium, have an M1/M2 imbalance that is closely related to the occurrence and development of OA. Mesenchymal stem cells (MSCs) have been shown to effectively suppress inflammation in the treatment of OA, but they still pose issues such as immune rejection and tumorigenicity.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the chronic toxicity and intergenerational effects of the chemical 6PPD and its combination with zinc (Zn) on Daphnia magna, a type of water flea, at concentrations similar to those found in the environment.
  • Results indicate that 6PPD exposure leads to a decrease in offspring numbers, with Zn exacerbating this reproductive toxicity, particularly at higher concentrations.
  • Findings suggest that while low doses of 6PPD produce detrimental effects over generations, high doses may trigger adaptive responses, highlighting the complex toxicological interactions between tire-derived chemicals and heavy metals in freshwater ecosystems.
View Article and Find Full Text PDF
Article Synopsis
  • Osteoarthritis is a common joint disorder characterized by the breakdown of cartilage, prompting the need for new treatment strategies beyond just pain relief.
  • This study proposes a new method using mesenchymal stem cells (MSCs) and a specially designed hydrogel microsphere that imitates natural cartilage to promote healing in damaged areas.
  • The engineered microspheres not only help recruit the body's own stem cells and support their development into cartilage cells but also improve the overall regenerative process, making it a promising option for treating osteoarthritis and similar conditions.
View Article and Find Full Text PDF

Revealing excellent materials for bone defect repair or bionic periosteum fabrication, as well as addressing infection post orthopedic implantation, continue to pose challenges in bone tissue engineering. Reaping the benefits of electrospinning technology, poly-ε-caprolactone (PCL) nanofibers have been fabricated, exhibiting excellent biocompatibility and plasticity. In this study, electrospun PCL nanofiber was employed as a substrate to generate an alternative with promising clinical potential.

View Article and Find Full Text PDF

The large anomalous Nernst effect in magnetic Weyl semimetals is one of the most intriguing transport phenomena, which draws significant attention for its potential applications in topological thermoelectrics. Despite frequent reports of substantial anomalous Nernst conductivity (ANC), methods to optimize Nernst thermoelectrics remain limited. The research reveals that the magnitude of the ANC is directly related to the sum of the anomalous Nernst and Hall angles.

View Article and Find Full Text PDF
Article Synopsis
  • A high-sucrose diet (HSD) leads to gut barrier dysfunction, including colon inflammation and tight junction damage, as observed in a mouse model over 16 weeks.
  • Metabolomic analysis revealed increased soluble epoxide hydrolase (sEH) levels and decreased 5(6)-epoxyeicosatrienoic acid (5(6)-EET) in the colon, suggesting sEH as a therapeutic target for HSD-related injuries.
  • Treatment with an sEH inhibitor or genetic knockout of the sEH gene reduced intestinal injuries, while 5(6)-EET showed anti-inflammatory effects and improved tight junctions, unlike its product 5,6-dihydroxyeicosatrienoic acid (5
View Article and Find Full Text PDF

The pursuit of extreme longevity is a popular topic. Advanced technologies such as metabolomics and proteomics have played a crucial role in unraveling complex molecular interactions and identifying novel longevity-related biomarkers in long-lived individuals. This review summarizes key longevity-related biomarkers identified through metabolomics, including high levels of omega-3 polyunsaturated fatty acids (PUFAs), short-chain fatty acids (SCFAs) and sphingolipids, as well as low levels of tryptophan.

View Article and Find Full Text PDF

Since the increasing number of polybutylene adipate terephthalate (PBAT)-based plastics entering the environment, the search for sustainable treatment methods has become a primary focus of contemporary research. Composting offers a novel approach for managing biodegradable plastics. However, a significant challenge in the composting process is how to control nitrogen loss and enhance plastic degradation.

View Article and Find Full Text PDF

Introduction: The relationship between coaches and athletes with disabilities is critical for enhancing athletes' performance and psychosocial well-being. This study aims to provide evidence-based recommendations for coaches, sports organizations, and policymakers dedicated to supporting athletes with disabilities.

Methods: A comprehensive analysis of existing literature was conducted.

View Article and Find Full Text PDF

Lung cancer has the highest fatality rate among malignant tumors in the world. Finding new biomarkers of drug resistance is of great importance in the prognosis of lung cancer patients. We found that the polymorphisms of Adenylate Cyclase 1 (ADCY1) are significantly associated with platinum-based chemotherapy resistance in lung cancer patients in our previous research.

View Article and Find Full Text PDF

Lactate, an important metabolic product, provides energy to neural cells during energy depletion or high demand and acts as a signaling molecule in the central nervous system. Recent studies revealed that lactate-mediated protein lactylation regulates gene transcription and influences cell fate, metabolic processes, inflammation, and immune responses. This review comprehensively examines the regulatory roles and mechanisms of lactylation in neurodevelopment, neuropsychiatric disorders, brain tumors, and cerebrovascular diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Ralstonia mannitolilytica is a worldwide pathogen linked to various illnesses, especially in patients with chronic obstructive pulmonary disease (AECOPD), where it can cause bacteremia.* -
  • The researchers employed techniques like the Vitek2™ system and 16S rRNA sequencing to identify the bacteria, and they sequenced its genome using advanced technology to analyze its genetic features.* -
  • The study revealed a complete genome with two chromosomes containing numerous antibiotic resistance genes and virulence factors, enhancing the understanding of its role in AECOPD.*
View Article and Find Full Text PDF