Publications by authors named "Litwack E"

Purpose: Next-generation sequencing (NGS) oncology panels are becoming integral in hospital and academic settings to guide patient treatment and enrollment in clinical trials. Although NGS technologies have revolutionized decision-making for cancer therapeutics, physicians may face many challenges in parsing and prioritizing NGS-based test results to determine the best course of treatment for individual patients. On January 29, 2018, the US Food and Drug Administration held a public workshop entitled, "Weighing the Evidence: Variant Classification and Interpretation in Precision Oncology.

View Article and Find Full Text PDF

The high-content interrogation of single cells with platforms optimized for the multiparameter characterization of cells in liquid and solid biopsy samples can enable characterization of heterogeneous populations of cells ex vivo. Doing so will advance the diagnosis, prognosis, and treatment of cancer and other diseases. However, it is important to understand the unique issues in resolving heterogeneity and variability at the single cell level before navigating the validation and regulatory requirements in order for these technologies to impact patient care.

View Article and Find Full Text PDF

Advances in our understanding of the molecular underpinnings of disease have spurred the development of targeted therapies and the use of precision medicine approaches in patient care. While targeted therapies have improved our capability to provide effective treatments to patients, they also present additional challenges to drug development and benefit-risk assessment such as identifying the subset(s) of patients likely to respond to the drug, assessing heterogeneity in response across molecular subsets of a disease, and developing diagnostic tests to identify patients for treatment. These challenges are particularly difficult to address when targeted therapies are developed to treat diseases with multiple molecular subtypes that occur at low frequencies.

View Article and Find Full Text PDF

High throughput molecular and functional profiling of patients is a key driver of precision medicine. DNA and RNA characterization has been enabled at unprecedented cost and scale through rapid, disruptive progress in sequencing technology, but challenges persist in data management and interpretation. We analyze the state-of-the-art of large-scale unbiased sequencing in drug discovery and development, including technology, application, ethical, regulatory, policy and commercial considerations, and discuss issues of LUS implementation in clinical and regulatory practice.

View Article and Find Full Text PDF

Granule neurons have a central role in cerebellar function via their synaptic interactions with other neuronal cell types both within and outside this structure. Establishment of these synaptic connections and its control is therefore essential to their function. Both intrinsic as well as environmental mechanisms are required for neuronal development and formation of neuronal circuits, and a key but poorly understood question is how these various events are coordinated and integrated in maturing neurons.

View Article and Find Full Text PDF

The Nuclear factor I (NFI) transcription factor family consists of four genes (Nfia, Nfib, Nfic and Nfix) that regulate the development of multiple organ systems in mice and humans. Nfib is expressed in both lung mesenchyme and epithelium and mice lacking Nfib have severe lung maturation defects and die at birth. Here we continue our analysis of the phenotype of Nfib⁻/⁻ lungs and show that Nfib specifically in lung mesenchyme controls late epithelial and mesenchymal cell proliferation and differentiation.

View Article and Find Full Text PDF

Recent studies have shown that the nuclear factor I (NFI) family controls multiple stages of the postmitotic differentiation of cerebellar granule neurons (CGNs). Regulation of cell-cell signaling is an integral part of this NFI program, which involves expression of the cell adhesion molecules N cadherin and ephrin B1 throughout postmitotic CGN development. Here, we identify two additional downstream targets of NFI that are involved in extracellular CGN interactions.

View Article and Find Full Text PDF

Transcription factors of the Nuclear Factor I (Nfi) family are important for the development of specific neuronal and glial populations in the nervous system. One such population, the neurons of the basilar pontine nuclei, expresses high levels of Nfi proteins, and the pontine nuclei are greatly reduced in mice lacking a functional Nfib gene. Pontine neurons, along with other precerebellar neurons that populate the hindbrain, arise from precursors in the lower rhombic lip and migrate anteroventrally to reach their final location.

View Article and Find Full Text PDF

Background: The Nuclear Factor I (NFI) multi-gene family encodes site-specific transcription factors essential for the development of a number of organ systems. We showed previously that Nfia-deficient mice exhibit agenesis of the corpus callosum and other forebrain defects; Nfib-deficient mice have defects in lung maturation and show callosal agenesis and forebrain defects resembling those seen in Nfia-deficient animals, while Nfic-deficient mice have defects in tooth root formation. Recently the Nfix gene has been disrupted and these studies indicated that there were largely uncharacterized defects in brain and skeletal development in Nfix-deficient mice.

View Article and Find Full Text PDF

A central question is how various stages of neuronal development are integrated as a differentiation program. Here we show that the nuclear factor I (NFI) family of transcriptional regulators is expressed and functions throughout the postmitotic development of cerebellar granule neurons (CGNs). Expression of an NFI dominant repressor in CGN cultures blocked axon outgrowth and dendrite formation and decreased CGN migration.

View Article and Find Full Text PDF

The laminar and area patterning of the mammalian neocortex are two organizing principles that define its functional architecture. Members of the immunoglobulin (Ig) superfamily of cell adhesion molecules influence neural development by regulating cell adhesion, migration, and process growth. Here we describe the dynamic expression of the unique Ig-containing cell adhesion molecule, MAM domain-containing glycosylphosphatidylinositol anchor 1 (MDGA1), during forebrain development in mice and compare it with other markers.

View Article and Find Full Text PDF

Several forms of congenital muscular dystrophy result from mutations in glycosyltransferases that modify alpha-dystroglycan. As pontine hypoplasia has been reported in some clinical cases of congenital muscular dystrophy, we have begun to examine whether these glycosyltransferases are required for the normal development of the basilar pons, one of several precerebellar nuclei of the hindbrain. In veils (Large(vls)) mice, which carry a loss-of-function mutation in the Large glycosyltransferase gene, the basilar pons is absent.

View Article and Find Full Text PDF

The phylogenetically conserved nuclear factor I (NFI) gene family encodes site-specific transcription factors essential for the development of a number of organ systems. We showed previously that Nfia-deficient mice exhibit agenesis of the corpus callosum and other forebrain defects, whereas Nfic-deficient mice have agenesis of molar tooth roots and severe incisor defects. Here we show that Nfib-deficient mice possess unique defects in lung maturation and exhibit callosal agenesis and forebrain defects that are similar to, but more severe than, those seen in Nfia-deficient animals.

View Article and Find Full Text PDF

We recently used a differential display PCR screen to identify secreted and transmembrane proteins that are highly expressed in the developing rat basilar pons, a prominent ventral hindbrain nucleus used as a model for studies of neuronal migration, axon outgrowth, and axon-target recognition. Here we describe cloning and characterization of one of these molecules, now called MDGA1, and a closely related homologue, MDGA2. Analyses of the full-length coding region of MDGA1 and MDGA2 indicate that they encode proteins that comprise a novel subgroup of the Ig superfamily and have a unique structural organization consisting of six immunoglobulin (Ig)-like domains followed by a single MAM domain.

View Article and Find Full Text PDF

The nonreceptor tyrosine kinase encoded by the c-Abl gene has the unique feature of an F-actin binding domain (FABD). Purified c-Abl tyrosine kinase is inhibited by F-actin, and this inhibition can be relieved through mutation of its FABD. The c-Abl kinase is activated by physiological signals that also regulate the actin cytoskeleton.

View Article and Find Full Text PDF

The basilar pons, a major hindbrain nucleus involved in sensory-motor integration, has become a model system for studying long-distance neuronal migration, axon-target recognition by collateral branching, and the formation of patterned axonal projections. To identify genes potentially involved in these developmental events, we have performed a differential display PCR screen comparing RNA isolated from the developing basilar pons with RNA obtained from developing cerebellum and olfactory bulb, as well as the mature basilar pons. Using 400 different combinations of primers, we screened more than 11,000 labeled DNA fragments and identified 201 that exhibited higher expression in the basilar pons than in the control tissues.

View Article and Find Full Text PDF

ARH-77 cells do not adhere to type I collagen and readily invade into collagen gels, but following expression of the transmembrane heparan sulfate proteoglycan syndecan-1, they bind collagen and fail to invade. We now show that cells transfected with syndecan-2 or syndecan-4 also bind collagen and are non-invasive. In contrast, cells transfected with the glycosylphosphatidylinositol-anchored proteoglycan glypican-1 do not bind to collagen and remain invasive, even though glypican- and syndecan-expressing cells have similar surface levels of heparan sulfate, and their proteoglycans have similar affinities for collagen.

View Article and Find Full Text PDF

The glypicans are a family of glycosylphosphatidylinositol (GPI)-anchored proteoglycans that, by virtue of their cell-surface localization and possession of heparan sulfate chains, may regulate the responses of cells to numerous heparin-binding growth factors, cell adhesion molecules, and extracellular matrix components. Mutations in one glypican cause a syndrome of human birth defects, suggesting important roles for these proteoglycans in development. Glypican-1, the first-discovered member of this family, was originally found in cultured fibroblasts, and later shown to be a major proteoglycan of the mature and developing brain.

View Article and Find Full Text PDF

Cerebroglycan is a glycosylphosphatidylinositol-linked integral membrane heparan sulfate proteoglycan found exclusively in the developing nervous system. In the rodent, cerebroglycan mRNA first appears in regions containing newly generated neurons and typically disappears 1 to several days later (Stipp et al., 1994, J.

View Article and Find Full Text PDF

Cell-surface proteoglycans have been implicated in cell responses to growth factors, extracellular matrix, and cell adhesion molecules. M12, one of the most abundant membrane-associated proteoglycans in the adult rat brain, is a approximately 65 kDa glycosylphosphatidylinositol-linked protein that bears heparan sulfate chains (Herndon and Lander, 1990). To assess its identity, M12 was purified and internal peptide sequences obtained.

View Article and Find Full Text PDF

Heparan sulfate proteoglycans (HSPGs) are found on the surface of all adherent cells and participate in the binding of growth factors, extracellular matrix glycoproteins, cell adhesion molecules, and proteases and antiproteases. We report here the cloning and pattern of expression of cerebroglycan, a glycosylphosphatidylinositol (GPI)-anchored HSPG that is found in the developing rat brain (previously referred to as HSPG M13; Herndon, M. E.

View Article and Find Full Text PDF

We used Southern blotting to screen a variety of bacterial genes for homology to the kdp genes of Escherichia coli, genes that encode an ATP-driven K+ transport system. We found that most enterobacteria have sequences homologous to those of the three kdp structural genes and the kdpD regulatory gene. A number of distantly related species, including some cyanobacteria, have sequences homologous to those of the structural genes but not the regulatory gene.

View Article and Find Full Text PDF