Hate crime victimization targeting the victim's religious identity poses a serious problem for individuals, communities, and societies. This systematic review describes countermeasures to such victimization, aiming for broad descriptive inclusion by canvassing personal adaptations, collective programs, and institutional-governmental policies. Targeting peer-reviewed articles published between 2002 and 2022, we found 44 articles describing measures related to religion-based victimization prevention.
View Article and Find Full Text PDFA content of C-reactive protein (CRP) in the blood serum was determined in 36 patients in acute period of a ruptured intracranial arterial aneurysm (AA). It was significantly more, than in a control group, and have exceeded 10 mg/I in 1 - 4th day of the disease. The level of CRP have had differ, depending on severity of cerebral vasospasm (CVS), determined in accordance to the ultrasound investigation data.
View Article and Find Full Text PDFNucleic Acids Res
November 2014
G-rich nucleic acids can form non-canonical G-quadruplex structures (G4s) in which four guanines fold in a planar arrangement through Hoogsteen hydrogen bonds. Although many biochemical and structural studies have focused on DNA sequences containing successive, adjacent guanines that spontaneously fold into G4s, evidence for their in vivo relevance has recently begun to accumulate. Complete sequencing of the human genome highlighted the presence of ∼300,000 sequences that can potentially form G4s.
View Article and Find Full Text PDFDNA replication occurs in various compartments of eukaryotic cells such as the nuclei, mitochondria and chloroplasts, the latter of which is used in plants and algae. Replication appears to be simpler in the mitochondria than in the nucleus where multiple DNA polymerases, which are key enzymes for DNA synthesis, have been characterized. In mammals, only one mitochondrial DNA polymerase (pol γ) has been described to date.
View Article and Find Full Text PDFDespite being simple eukaryotic organisms, the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have been widely used as a model to study human pathologies and the replication of human, animal, and plant viruses, as well as the function of individual viral proteins. The complete genome of S. cerevisiae was the first of eukaryotic origin to be sequenced and contains about 6,000 genes.
View Article and Find Full Text PDFStable HIV-1 replication requires the DNA repair of the integration locus catalyzed by cellular factors. The human RAD51 (hRAD51) protein plays a major role in homologous recombination (HR) DNA repair and was previously shown to interact with HIV-1 integrase (IN) and inhibit its activity. Here we determined the molecular mechanism of inhibition of IN.
View Article and Find Full Text PDFIn this letter, we develop and simulate a large-scale network of spiking neurons that approximates the inference computations performed by graphical models. Unlike previous related schemes, which used sum and product operations in either the log or linear domains, the current model uses an inference scheme based on the sum and maximization operations in the log domain. Simulations show that using these operations, a large-scale circuit, which combines populations of spiking neurons as basic building blocks, is capable of finding close approximations to the full mathematical computations performed by graphical models within a few hundred milliseconds.
View Article and Find Full Text PDFIntI1 integrase is a tyrosine recombinase involved in the mobility of antibiotic resistance gene cassettes within bacterial class 1 integrons. Recent data have shown that its recombination specifically involves the bottom strand of the attC site, but the exact mechanism of the reaction is still unclear. An efficient in vitro assay is still required to better characterize the biochemical properties of the enzyme.
View Article and Find Full Text PDFWe have previously described how a 16 nucleotides ODN (termed 93del) is capable of inhibiting the activity of recombinant integrase in a cell-free system as well as HIV-1 replication in human-infected cells with IC(50) in the low nanomolar range. Intracellular HIV-1 replication was inhibited when the ODN was added at the onset of infection. These results raise several questions.
View Article and Find Full Text PDFOn May 17, 2004, Massachusetts became the first state to legalize same-gender marriage. From California to Missouri, nearly all states now face legislative challenges to the once firmly entrenched notion that marriage can only exist between a man and a woman. Public opinion polls conducted from 1977 to 2004 found that Americans' attitudes toward gay men and lesbians and marriages or civil unions for same-gender couples have evolved.
View Article and Find Full Text PDFHIV-1 integrase (IN) catalyses integration of a DNA copy of the viral genome into the host genome. Specific interactions between retroviral IN and long terminal repeats (LTR) are required for this insertion. To characterize quantitatively the influence of the determinants of DNA substrate specificity on the oligomerization status of IN, we used the small-angle X-ray scattering (SAXS) technique.
View Article and Find Full Text PDFHIV-1 integrase (IN) is the key enzyme catalyzing the proviral DNA integration step. Although the enzyme catalyzes the integration step accurately in vitro, whether IN is sufficient for in vivo integration and how it interacts with the cellular machinery remains unclear. We set up a yeast cellular integration system where integrase was expressed as the sole HIV-1 protein and targeted the chromosomes.
View Article and Find Full Text PDFSeveral in vitro strategies have been developed to selectively screen for nucleic acid sequences that bind to specific proteins. We previously used the SELEX procedure to search for aptamers against HIV-1 RNase H activity associated with reverse transcriptase (RT) and human RNase H1. Aptamers containing G-rich sequences were selected in both cases.
View Article and Find Full Text PDFIn our attempt to obtain further information on the replication mechanism of the hepatitis C virus (HCV), we have studied the role of sequences at the 3'-end of HCV minus-strand RNA in the initiation of synthesis of the viral genome by viral RNA-dependent RNA polymerase (RdRp). In this report, we investigated the template and binding properties of mutated and deleted RNA fragments of the 3'-end of the minus-strand HCV RNA in the presence of viral polymerase. These mutants were designed following the newly established secondary structure of this viral RNA fragment.
View Article and Find Full Text PDFThe influence of new non-natural regular minor groove binders (MGB), containing 2-4 imidazole, pyrrole or thiazole residues, and their conjugates with oligonucleotides, on the polymerization reaction catalyzed by HIV-1 reverse transcriptase was analyzed. Various model template-primer complexes: poly(A)-oligo(U), poly(A)-oligo(dT), poly(dA)-oligo(U), poly(dA)-oligo(dT) and activated DNA were used. The concentration of oligopeptides, giving 50% inhibition (I50) of the RT-dependent polymerization reaction, was shown to depend strongly on the structure of template-primer complexes, number and type of the heterocycle rings in the MGBs analyzed.
View Article and Find Full Text PDFSeventeen aqueous and methanol extracts from nine South African medicinal plants, ethnobotanically selected, were screened for inhibitory properties against HIV-1 reverse transcriptase (RT). Isolated compounds were additionally evaluated on HIV-1 integrase (IN). The strongest inhibition against the RNA-dependent-DNA polymerase (RDDP) activity of RT was observed with the methanol extract of the stem-bark of Peltophorum africanum Sond.
View Article and Find Full Text PDFThe oligomeric state of active human immunodeficiency virus type 1 (HIV-1) integrase (IN) has not been clearly elucidated. We analyzed the activity of the different purified oligomeric forms of recombinant IN obtained after stabilization by platinum crosslinking. The crosslinked tetramer isolated by gel chromatography was able to catalyze the full-site integration of the two viral LTR ends into a target DNA in vitro, whereas the isolated dimeric form of the enzyme was involved in the processing and integration of only one viral end.
View Article and Find Full Text PDFHuman immunodeficiency virus type 1 integrase catalyzes the integration of proviral DNA into the infected cell genome, so it is an important potential target for antiviral drug design. In an attempt to search for peptides that specifically interact with integrase (IN) and inhibit its function, we used an in vitro selection procedure, the phage display technique. A phage display library of random heptapeptides was used to screen for potential peptide ligands of HIV-1 IN.
View Article and Find Full Text PDFThe RNA-dependent RNA polymerase (NS5B) of the hepatitis C virus (HCV) plays a key role in the life cycle of the virus. In order to find inhibitors of the HCV polymerase, we screened a library of 81 nucleotide (nt)-long synthetic DNA containing 35 random nucleotides by the Systematic Evolution of Ligands by Exponential enrichment (SELEX) approach. Thirty ligands selected for their binding affinity to the NS5B were classified into four groups on the basis of their sequence homologies.
View Article and Find Full Text PDFHuman immunodeficiency virus type 1 (HIV-1) integrase (IN) catalyzes the insertion of the viral genome into the host cell DNA, an essential reaction during the retroviral cycle. We described previously that expression of HIV-1 IN in some yeast strains may lead to the emergence of a lethal phenotype which was not observed when the catalytically crucial residues D, D, (35)E were mutated. The lethal effect in yeast seems to be related to the mutagenic effect of the recombinant HIV-1 IN, most probably via the non-sequence-specific endonucleolytic activity carried by this enzyme.
View Article and Find Full Text PDFWe describe oligonucleotides (ODNs) that inhibit hepatitis C virus (HCV) RNA synthesis in vitro. From a series of 13 ODNs complementary to the 3'-end of the minus-strand HCV RNA, only 4 inhibited RNA synthesis with IC(50) values lower than 1 microM. The inhibition was sequence-specific, since no effect was observed when the ODNs were used with a noncomplementary template.
View Article and Find Full Text PDFSpecific interactions between retroviral integrase (IN) and long terminal repeats are required for insertion of viral DNA into the host genome. To characterize quantitatively the determinants of substrate specificity, we used a method based on a stepwise increase in ligand complexity. This allowed an estimation of the relative contributions of each nucleotide from oligonucleotides to the total affinity for IN.
View Article and Find Full Text PDFThe hepatitis C virus (HCV) 5' untranslated region (UTR) has been extensively studied with regard to its internal ribosomal entry site (IRES) activity. In this work we present results suggesting the existence of a strong promoter activity carried by the DNA sequence corresponding to the HCV 5' UTR. This activity was not detected when the HCV 5' UTR sequence was replaced by HCV 3' UTR or poliovirus 5' UTR sequences.
View Article and Find Full Text PDF