Soybean cyst nematode disease represents the major soil-borne disease of soybean. Identifying disease-resistant genes in soybean has a substantial impact on breeding of disease-resistant crops and genetic improvement. The present work created the F population with the disease-resistant line H-10 and disease-susceptible line Chidou4.
View Article and Find Full Text PDFWith the growing demand for new energy storage devices, rechargeable aqueous zinc ion batteries (ZIBs) have attracted widespread attention due to their low cost and high safety. Among the cathode materials for ZIBs, polyanionic-based cathode materials with high voltage, high stability, and low cost have great potential. In this paper, tetragonal NaVOPO was prepared using a simple sol-gel method.
View Article and Find Full Text PDFCloaking against electromagnetic detection is a well-researched topic; yet achieving multispectral camouflage over a wide temperature range remains challenging. Herein, an orientation-gradient co-optimized graded Gyroid-shellular (GGS) SiOC-based metastructure with a conformal MXene coating (M@SiOC) is proposed to achieve wide-temperature-range microwave/infrared/visible-light-compatible camouflage. Firstly, the combination of coordinate transformation and genetic algorithm endows the GGS architecture with optimal orientation and gradient, allowing superior microwave blackbody-like behavior.
View Article and Find Full Text PDFSolar-thermal conversion is considered as a green and simple means to improve the performance of energy storage materials, but often limited by the intrinsic photothermal properties of materials and crude structure design. Herein, inspired by the unique light trapping effect of wide leaf spiral grass during photosynthesis, a biomimetic structural photothermal energy storage system is developed, to further promote the solar thermal-driven pseudo capacitance improvement. In this system, three-dimensional printed tortional Kelvin cell arrays structure with interesting light trapping property functions as "spiral leaf blades" to improve the efficiency of light absorption, while graphene quantum dots/MXene nanohybrids with wide photothermal response range and strong electrochemical activity serve as "chloroplast" for photothermal conversion and energy storage.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2022
In this article, a 3D photocatalytic support with different Poisson's ratio was used for the first time to control the photocatalytic production rate of hydrogen. It was created by a stereo-lithography method, and the support with the most negative Poisson's ratio got the best result. The Poisson's ratio of the 3D structure influences the rate of hydrogen production, and it is important for the photocatalyst supports to be porous for light to penetrate into them.
View Article and Find Full Text PDFHeterogeneous interface design to boost interfacial polarization has become a feasible way to realize high electromagnetic wave absorbing (EMA) performance of dielectric materials. However, interfacial polarization in simple structures such as particles, rods, and flakes is weak and usually plays a secondary role. In order to enhance the interfacial polarization and simultaneously reduce the electronic conductivity to avoid reflection of electromagnetic wave, a more rational geometric structure for dielectric materials is desired.
View Article and Find Full Text PDFIn this paper, a multipopulation dynamic adaptive coevolutionary strategy is proposed for large-scale optimization problems, which can dynamically and adaptively adjust the connection between population particles according to the optimization problem characteristics. Based on analysis of the network evolution characteristics of collaborative search between particles, a dynamic adaptive evolutionary network (DAEN) model with multiple interconnection couplings is established in this algorithm. In the model, the swarm type is divided according to the judgment threshold of particle types, and the dynamic evolution of collaborative topology in the evolutionary process is adaptively completed according to the coupling connection strength between different particle types, which enhances the algorithm's global and local searching capability and optimization accuracy.
View Article and Find Full Text PDFBackground: In patients undergoing mechanical thrombectomy (MT), adjunctive antithrombotic might improve angiographic reperfusion, reduce the risk of distal emboli and reocclusion but possibly expose patients to a higher intracranial hemorrhage risk. This study evaluated the safety and efficacy of combined MT plus eptifibatide for acute ischemic stroke.
Methods: This was a propensity-matched analysis of data from 2 prospective trials in Chinese populations: the ANGEL-ACT trial (Endovascular Treatment Key Technique and Emergency Workflow Improvement of Acute Ischemic Stroke) in 111 hospitals between November 2017 and March 2019, and the EPOCH trial (Eptifibatide in Endovascular Treatment of Acute Ischemic Stroke) in 15 hospitals between April 2019 and March 2020.
J Colloid Interface Sci
April 2022
Converting CO into chemical energy by using solar energy is an environmental strategy to achieve carbon neutrality. In this paper, two dimensionality (2D) SrTiO nanosheets with oxygen vacancies were synthesized successfully. Oxygen vacancies will generate defect levels in the band structure of SrTiO.
View Article and Find Full Text PDFWith the accelerating update of advanced electronic gadgets, a great deal of attention is being paid today to the function integration and intelligent design of electronic devices. Herein, a novel kind of multitasking 3D oxygen-deficient WO ∙ 2H O/Ag/ceramic microscaffolds, possessing simultaneous giant energy density, ultrahigh mechanical strength, and reversible electrochromic performance is proposed, and fabricated by a 3D printing technique. The ceramic microscaffolds ensure outstanding mechanical strength and stability, the topology optimized porous lattice structure provides developed surface area for coloration as well as abundant easily accessible channels for rapid ion transportation, and the bifunctional oxygen-defective pseudomaterials enable the large areal capacity and impressive electrochromic performance.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2022
Bismuth titanate (BiTiO) with unique sillenite structure has been shown to be an excellent photocatalyst for environmental remediation. However, the narrow light-responsive range and rapid recombination of photoinduced electrons-holes limit the photocatalytic performance of BiTiO. To overcome the limitations, a practical and feasibleway is to fabricate heterojunctions by combining BiTiO with suitable photocatalysts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2021
Superlubricity is a fascinating phenomenon which attracts people to continuously expand ultralow friction and wear from microscale to macroscale. Despite the impressive advances in this field, it is still limited to specific materials and extreme operating conditions. Introducing a heterostructure with intrinsic lattice mismatch into delicate topologies mimicked from nature provides a promising alternative toward macroscopic superlubricity.
View Article and Find Full Text PDFCarbon nitride has drawn widespread attention as a low-cost alternative to metal-based materials in the field of photocatalysis. However, the traditionally synthesized carbon nitrides always suffer a bulky architecture, which limits their intrinsic activities. Here, a cycloaddition reaction is proposed to synthesize a triazine-based precursor with implanted sodium and cyano groups, which are mostly retained in the resulting carbon nitride after the following polymerization.
View Article and Find Full Text PDFMicrowave absorption materials (MAMs) with lightweight density and ultrabroad-band microwave absorption performance are urgently needed in advanced MAMs, which are still a big challenge and have been rarely achieved. Here, a new wide bandwidth absorption model was designed, which fuses the electromagnetic resonance loss ability of a periodic porous structure in the low-frequency range and the dielectric loss ability of dielectric materials in the high-frequency range. Based on this model, a lightweight porous cellulose nanofiber (CNF)/carbon nanotube (CNT) foam consisting of a cellular vertical porous architecture with the macropore diameters between 30 and 90 μm and a nanoporous architecture at a scale of 1.
View Article and Find Full Text PDFLightweight absorption-dominated electromagnetic interference (EMI) shielding materials are more attractive than conventional reflection-dominated counterparts because they minimize the twice pollution of the reflected electromagnetic (EM) wave. Here, porous TiCT MXene/poly(vinyl alcohol) composite foams constructed by few-layered TiCT (f-TiCT ) MXene and poly(vinyl alcohol) (PVA) are fabricated via a facile freeze-drying method. As superior EMI shielding materials, their calculated specific shielding effectiveness reaches up to 5136 dB cm g with an ultralow filler content of only 0.
View Article and Find Full Text PDFThe fabrication of a sandwich-like composite that consists of reduced graphene oxide (RGO) and SiN ceramic (RGO/SiN) was achieved through the combination of modified freeze-drying approach and chemical vapor infiltration process. Due to a hierarchical structure and a high ratio of I/ I (1.27), the RGO/SiN exhibits an unprecedented high polarization relaxation loss (PRL), which accounts for 32% of the whole dielectric loss.
View Article and Find Full Text PDFShort silicon nitride fibers were fabricated by direct nitridation of ferrosilicon in N₂ atmosphere, and their structure and possible growth mechanism were characterized and investigated. The rod-like fibers which were α-Si₃N₄ with a low degree of crystallization and a high aspect ratio had a diameter of about 4 μm and a length close to a few millimeters. Belt-like fibers with a width about 5 μm and a thickness about 1 μm were also found in the nitrides.
View Article and Find Full Text PDFA broadband microwave absorbing composite with a multi-scale layered structure is proposed, in which a reduced graphene oxide (RGO) film sandwiched between two layers of epoxy glass fiber laminates serves as the frequency selective surface (FSS). RGO films with the desired electrical properties were synthesized directly by hydrothermal reaction, vacuum filtration, and heat treatment without subsequent processing. With the novel layer-by-layer structure ranging from micro to macro scale, the optimized composite exhibits excellent microwave absorption performance with a total thickness of 3.
View Article and Find Full Text PDFTwo-dimensional (2D) few-layered TiCT MXene (f-TiCT ) has been proved to be one of the most promising electromagnetic interference (EMI) materials, but its electromagnetic (EM) absorption properties and loss mechanism have not been studied so far. Herein, for the first time, ordered lamellar f-TiCT /SiCnws hybrid foams with ultralow density are synthesized by a combination of self-assembly and bidirectional freezing processes. The freestanding foams exhibit excellent EM absorption properties superior to most of the current foam-based counterparts.
View Article and Find Full Text PDFThe mechanical and dielectric properties of two types of amorphous silicon nitride (Si₃N₄) fibers prior to and following annealing at 800 °C were studied. The tensile strengths of the Si₃N₄ fiber bundles were measured using unidirectional tensile experimentation at room temperature, whereas the permittivity values were measured at 8.2⁻12.
View Article and Find Full Text PDFIn this study, mesoporous carbon hollow microspheres (PCHMs) with tunable textural properties have been prepared through a facile hard template etching method. The PCHMs were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Raman spectra, and nitrogen adsorption and desorption systems. Uniform PCHMs with shell thickness ranging from 23 nm to 55 nm are realized.
View Article and Find Full Text PDFSiC/SiN composite nanofibers with in situ embedded graphite, which show highly efficient electromagnetic (EM) wave absorption performance in gigahertz frequency, were prepared by electrospinning with subsequent polymer pyrolysis and annealing. By means of incorporating graphite and SiN into SiC, the EM wave absorption properties of the nanofibers were improved. The relationship among processing, fiber microstructure, and their superior EM wave absorption performance was systematically investigated.
View Article and Find Full Text PDFMaterials with an ultralow density and ultrahigh electromagnetic-interference (EMI)-shielding performance are highly desirable in fields of aerospace, portable electronics, and so on. Theoretical work predicts that 3D carbon nanotube (CNT)/graphene hybrids are one of the most promising lightweight EMI shielding materials, owing to their unique nanostructures and extraordinary electronic properties. Herein, for the first time, a lightweight, flexible, and conductive CNT-multilayered graphene edge plane (MLGEP) core-shell hybrid foam is fabricated using chemical vapor deposition.
View Article and Find Full Text PDF