As an important industrial material, triclosan is widely used in manufacturing, and similar to many materials of its kind, triclosan causes significant environmental pollution, especially water pollution. In the organic pollutant degradation field, iron nanoparticles are among the most popular catalysts and have been successfully applied in various kinds of environmental modification, but there is still plenty of room for improvement. As we will show in this study, combined with nickel, the montmorillonite-supported Fe-Ni bimetallic nano-systems gained better organic contaminant degradation ability and stability than iron nanoparticles.
View Article and Find Full Text PDFThe nanopore network in organic-rich shale plays a key role in shale gas storage and migration, and micropores are an important structural unit in connecting the migration channel. In this study, we selected six non-marine coal-bearing shales from the Qinshui Basin to investigate the effect of composition on micropore structure using X-ray diffraction, total organic carbon (TOC), vitrinite reflectance, and CO₂ adsorption methods. The results indicate that non-marine shale with higher TOC content possesses more micropores, leading to a more complex pore structure and improving the heterogeneity of shale reservoirs.
View Article and Find Full Text PDFThe structure and fractal characteristics of nanopores of high-rank coal were investigated using an approach that integrates N₂ adsorption and field emission scanning electron microscopy (FE-SEM). The results indicated that the high-rank coal of the Shanxi Formation has a complex pore-fracture network composed of organic matter pores, mineral-related pores, and microfractures. The pore type of high-rank coal tends to be complicated, and the main pore types are inkbottle pores and open pores, which are more conducive to methane enrichment.
View Article and Find Full Text PDFThe mineralogical and compositional characteristics of gold-bearing minerals and the occurrence of gold are not only of great significance to exploring the sources of ore-forming materials and their formation mechanisms but also helpful for designing reasonable beneficiations and smelting schemes and achieving remarkable economic benefits. This paper presents an integrated study on the crystal characteristics, elemental composition and distribution of pyrite (the main gold-bearing minerals), on the basis of electron probe microanalysis (EPMA), scanning electron microscopy (SEM), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and nano-secondary ion mass spectrometry (NanoSIMS). The occurrence of gold in the Shuiyindong gold deposit and Ashawayi gold deposit has been studied by means of microscopy, SEM, and EPMA images, elemental correlations, S-Fe-As ternary diagrams, logAs-logAu diagrams and Au/As ratios.
View Article and Find Full Text PDFIn this study, ZnAlTi layered double hydroxide (ZnAlTi-LDH) combined with fullerene (C) was fabricated by the urea method, and calcined under vacuum atmosphere to obtain nanocomposites of C-modified ZnAlTi layered double oxide (ZnAlTi-LDO). The morphology, structure and composition of the nanocomposites were analyzed by Scanning Electron Microscopy, High-resolution transmission electron microscopy, X-ray diffraction patterns, Fourier transform infrared and specific surface area. The UV-vis diffuse reflectance spectra indicated that the incorporation of C expanded the absorption of ZnAlTi-LDO to visible-light region.
View Article and Find Full Text PDFIron nanoparticles exhibit greater reactivity than micro-sized Fe(0), and they impart advantages for groundwater remediation. In this paper, supported iron nanoparticles were synthesized to further enhance the speed and efficiency of remediation. Natural montmorillonite and organo-montmorillonite were chosen as supporting materials.
View Article and Find Full Text PDF