Publications by authors named "Lithgow-Bertelloni C"

The shape of the ocean floor (bathymetry) and the overlaying sediments provide the largest carbon sink throughout Earth's history, supporting ~one to two orders of magnitude more carbon storage than the oceans and atmosphere combined. While accumulation and erosion of these sediments are bathymetry dependent (e.g.

View Article and Find Full Text PDF

Volcanic hotspots are thought to be fed by hot, active upwellings from the deep mantle, with excess temperatures () ~100° to 300°C higher than those of mid-ocean ridges. However, estimates are limited in geographical coverage and often inconsistent for individual hotspots. We infer the temperature of oceanic hotspots and ridges simultaneously by converting seismic velocity to temperature.

View Article and Find Full Text PDF

The Hawaiian-Emperor seamount chain that includes the Hawaiian volcanoes was created by the Hawaiian mantle plume. Although the mantle plume hypothesis predicts an oceanic plateau produced by massive decompression melting during the initiation stage of the Hawaiian hot spot, the fate of this plateau is unclear. We discovered a megameter-scale portion of thickened oceanic crust in the uppermost lower mantle west of the Sea of Okhotsk by stacking seismic waveforms of precursors.

View Article and Find Full Text PDF

Several theoretical studies indicate that a substantial fraction of the measured seismic anisotropy could be interpreted as extrinsic anisotropy associated with compositional layering in rocks, reducing the significance of strain-induced intrinsic anisotropy. Here we quantify the potential contribution of grain-scale and rock-scale compositional anisotropy to the observations by (i) combining effective medium theories with realistic estimates of mineral isotropic elastic properties and (ii) measuring velocities of synthetic seismic waves propagating through modeled strain-induced microstructures. It is shown that for typical mantle and oceanic crust subsolidus compositions, rock-scale compositional layering does not generate any substantial extrinsic anisotropy (<1%) because of the limited contrast in isotropic elastic moduli among different rocks.

View Article and Find Full Text PDF

The viscosity structure of Earth's deep mantle affects the thermal evolution of Earth, the ascent of mantle plumes, settling of subducted oceanic lithosphere, and the mixing of compositional heterogeneities in the mantle. Based on a reanalysis of the long-wavelength nonhydrostatic geoid, we infer viscous layering of the mantle using a method that allows us to avoid a priori assumptions about its variation with depth. We detect an increase in viscosity at 800- to 1200-kilometers depth, far greater than the depth of the mineral phase transformations that define the mantle transition zone.

View Article and Find Full Text PDF

The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.

View Article and Find Full Text PDF

The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate.

View Article and Find Full Text PDF

Computer models of mantle convection constrained by the history of Cenozoic and Mesozoic plate motions explain some deep-mantle structural heterogeneity imaged by seismic tomography, especially those related to subduction. They also reveal a 150-million-year time scale for generating thermal heterogeneity in the mantle, comparable to the record of plate motion reconstructions, so that the problem of unknown initial conditions can be overcome. The pattern of lowermost mantle structure at the core-mantle boundary is controlled by subduction history, although seismic tomography reveals intense large-scale hot (low-velocity) upwelling features not explicitly predicted by the models.

View Article and Find Full Text PDF

Although the African Plate's northeastward absolute motion slowed abruptly 30 million years ago, the South Atlantic's spreading velocity has remained roughly constant over the past 80 million years, thus requiring a simultaneous westward acceleration of the South American Plate. This plate velocity correlation occurs because the two plates are coupled to general mantle circulation. The deceleration of the African Plate, due to its collision with the Eurasian Plate, diverts mantle flow westward, increasing the net basal driving torque and westward velocity of the South American Plate.

View Article and Find Full Text PDF

Paleomagnetic data show less than approximately 1000 kilometers of motion between the paleomagnetic and hotspot reference frames-that is, true polar wander-during the past 100 million years, which implies that Earth's rotation axis has been very stable. This long-term rotational stability can be explained by the slow rate of change in the large-scale pattern of plate tectonic motions during Cenozoic and late Mesozoic time, provided that subducted lithosphere is a major component of the mantle density heterogeneity generated by convection. Therefore, it is unnecessary to invoke other mechanisms, such as sluggish readjustment of the rotational bulge, to explain the observed low rate of true polar wander.

View Article and Find Full Text PDF