One-dimensional sub-wavelength gratings are versatile photonic platforms supporting diverse resonances, including symmetry-protected bound states in the continuum. However, practical access to these bound modes relies on their quasi-bound form, which necessitates the introduction of perturbations in either geometry or material properties. Despite having a large, finite quality factor, quasi-bound modes retain their characteristically strong field confinement.
View Article and Find Full Text PDFThe structural symmetry of solids plays an important role in defining their linear and nonlinear optical properties. The quest for versatile, cost-effective, large-scale, and defect-free approaches and materials platforms for tailoring structural and optical properties on demand is underway since decades. A self-assembled spherulite material comprised of synthesized molecules with large dipole moments aligned azimuthally, forming a vortex polarity with spontaneously broken symmetry, is experimentally demonstrated.
View Article and Find Full Text PDFThe rapid development of optical technologies, such as optical manipulation, data processing, sensing, microscopy, and communications, necessitates new degrees of freedom to sculpt optical beams in space and time beyond conventionally used spatially homogenous amplitude, phase, and polarization. Structuring light in space and time has been indeed shown to open new opportunities for both applied and fundamental science of light. Rapid progress in nanophotonics has opened up new ways of "engineering" ultra-compact, versatile optical nanostructures, such as optical two-dimensional metasurfaces or three-dimensional metamaterials that facilitate new ways of optical beam shaping and manipulation.
View Article and Find Full Text PDFA step towards the next generation of high-capacity, noise-resilient communication and computing technologies is a substantial increase in the dimensionality of information space and the synthesis of superposition states on an N-dimensional (N > 2) Hilbert space featuring exotic group symmetries. Despite the rapid development of photonic devices and systems, on-chip information technologies are mostly limited to two-level systems owing to the lack of sufficient reconfigurability to satisfy the stringent requirement for 2(N - 1) degrees of freedom, intrinsically associated with the increase of synthetic dimensionalities. Even with extensive efforts dedicated to recently emerged vector lasers and microcavities for the expansion of dimensionalities, it still remains a challenge to actively tune the diversified, high-dimensional superposition states of light on demand.
View Article and Find Full Text PDFWe demonstrate a simple, femtosecond-scale wavelength tunable, subwavelength-thick nanostructure that performs efficient wavelength conversion from the infrared to the ultraviolet. The output wavelength can be tuned by varying the input power of the infrared pump beam and/or relative delay of the control beam with respect to the pump beam, and does not require any external realignment of the system. The nanostructure is made of chalcogenide glass that possesses strong Kerr nonlinearity and high linear refractive index, leading to strong field enhancement at Mie resonances.
View Article and Find Full Text PDFPhotonic quasicrystals are poised to transform the field of nonlinear light-matter interactions due to their ability to support an unlimited number of combinations of wavevectors in their reciprocal lattices. Such greatly enhanced flexibility enabled by k-space engineering makes photonic quasicrystals a promising platform for novel approaches to multi-wavelength conversion, supercontinuum generation, and development of classical and quantum optical sources. Here, we develop a new design method for nonlinear photonic quasicrystals, consisting of a combination of one nonlinear material and one linear material that can simultaneously fulfill phase-matching conditions for a desired number of nonlinear optical interactions as long as the frequencies of the interacting waves are outside of the bandgaps of the quasicrystal structure.
View Article and Find Full Text PDFChalcogenide photonics offers unique solutions for a broad range of applications from mid-infrared sensing to integrated, ultrafast, ultrahigh-bandwidth signal processing. However, to date its usage has been limited to the infrared part of the electromagnetic spectrum, thus avoiding ultraviolet and visible ranges due to absorption of chalcogenide glasses. Here, we experimentally demonstrate and report near-infrared to ultraviolet frequency conversion in an AsS-based metasurface, enabled by a phase locking mechanism between the pump and the inhomogeneous portion of the third harmonic signal.
View Article and Find Full Text PDFLight scattering by disordered media is a ubiquitous effect. After passing through them, the light acquires a random phase, masking or destroying associated information. Filtering this random phase is of paramount importance to many applications, such as sensing, imaging, and optical communication, to cite a few, and it is commonly achieved through computationally extensive post-processing using statistical correlation.
View Article and Find Full Text PDFWe demonstrate a new method for a systematic, dynamic, high-speed, spatio-temporal control of femtosecond light filamentation in BK7 as a particular example of nonlinear medium. This method is based on using coherent conjugate asymmetric Bessel-Gaussian beams to control the far-field intensity distribution and in turn control the filamentation location. Such spatio-temporal control allows every femtosecond pulse to have a unique intensity distribution that results in the generation of structured filamentation patterns on demand.
View Article and Find Full Text PDFWe investigated the statistical properties of partially coherent optical vortex beams scattered by a $\mathcal {PT}$ dipole, consisting of a pair of point particles having balanced gain and loss. The formalism of second-order classical coherence theory is adopted, together with the first Born approximation, to obtain the cross-spectral density of the scattered field. It is shown that the radiated pattern depends strongly on the coherence properties of the incident beam and on the non-Hermitian properties of the dipole.
View Article and Find Full Text PDFThe nonlinear scaling of complexity with the increased number of components in integrated photonics is a major obstacle impeding large-scale, phase-locked laser arrays. Here, we develop a higher-dimensional supersymmetry formalism for precise mode control and nonlinear power scaling. Our supersymmetric microlaser arrays feature phase-locked coherence and synchronization of all of the evanescently coupled microring lasers-collectively oscillating in the fundamental transverse supermode-which enables high-radiance, small-divergence, and single-frequency laser emission with a two-orders-of-magnitude enhancement in energy density.
View Article and Find Full Text PDFOn-chip integrated laser sources of structured light carrying fractional orbital angular momentum (FOAM) are highly desirable for the forefront development of optical communication and quantum information-processing technologies. While integrated vortex beam generators have been previously demonstrated in different optical settings, ultrafast control and sweep of FOAM light with low-power control, suitable for high-speed optical communication and computing, remains challenging. Here we demonstrate fast control of the FOAM from a vortex semiconductor microlaser based on fast transient mixing of integer laser vorticities induced by a control pulse.
View Article and Find Full Text PDFLaser filament applications relying on filament plasma conductivity are limited by their low electron densities and corresponding short lifetimes. Filament plasma formation, an intensity-dependent process, is limited by the clamping of the filament core intensity. Consequently, increasing initial beam energy results in the breakup of the beam into multiple filaments rather than the enhancement of the electron density and conductivity of an individual filament.
View Article and Find Full Text PDFThe orbital angular momentum (OAM) intrinsically carried by vortex light beams holds a promise for multidimensional high-capacity data multiplexing, meeting the ever-increasing demands for information. Development of a dynamically tunable OAM light source is a critical step in the realization of OAM modulation and multiplexing. By harnessing the properties of total momentum conservation, spin-orbit interaction, and optical non-Hermitian symmetry breaking, we demonstrate an OAM-tunable vortex microlaser, providing chiral light states of variable topological charges at a single telecommunication wavelength.
View Article and Find Full Text PDFThis Letter lays the foundation of a new type of distributed feedback (DFB) laser whose optical feedback is due to the evanescent coupling between an active positive-index material (PIM) waveguide and a lossy negative-index metamaterial (NIM) waveguide. Active PIM-NIM coupled-mode equations are presented and solved to characterize the dispersion relation, resonant optical gain, and lasing. The photonic bandgap of this grating-less DFB laser does not depend on a Bragg wavenumber, but depends on the difference between the wavenumbers of the PIM and NIM waveguides; controlling this wavenumber difference allows for single-mode lasing and, ultimately, single-mode broadband lasing.
View Article and Find Full Text PDFIn the version of this Letter originally published, Fig. 5g in the Supplementary Information was missing the scale bar. This has now been corrected.
View Article and Find Full Text PDFUltra-compact, low-loss, fast, and reconfigurable optical components, enabling manipulation of light by light, could open numerous opportunities for controlling light on the nanoscale. Nanostructured all-dielectric metasurfaces have been shown to enable extensive control of amplitude and phase of light in the linear optical regime. Among other functionalities, they offer unique opportunities for shaping the wave front of light to introduce the orbital angular momentum (OAM) to a beam.
View Article and Find Full Text PDFPhotonic topological insulators offer the possibility to eliminate backscattering losses and improve the efficiency of optical communication systems. Despite considerable efforts, a direct experimental demonstration of theoretically predicted robust, lossless energy transport in topological insulators operating at near-infrared frequencies is still missing. Here, we combine the properties of a planar silicon photonic crystal and the concept of topological protection to design, fabricate and characterize an optical topological insulator that exhibits the valley Hall effect.
View Article and Find Full Text PDFWe introduce the notion of a supercharge optical array synthesized according to supersymmetric charge operators. Starting from an arbitrary array, mathematical supersymmetry transformation can be used systematically to create a zero-energy physical state below the ground state of the super-partner array. This zero mode, which is pinned deep in the mid-gap of the corresponding supercharge array owing to the square-root spectral relationship between a supercharge and a super-Hamiltonian array, is shown to be protected because of the chiral symmetry inherent to a supercharge array.
View Article and Find Full Text PDFSingle-mode operation of coupled optical systems, such as optical-fiber bundles, lattices of photonic waveguides, or laser arrays, requires an efficient method to suppress unwanted super-modes. Here, we propose a systematic supersymmetry-based approach to selectively eliminate modes of such systems by decreasing their lifetime relative to the lifetime of the mode of interest. The proposed method allows to explore the opto-geometric parameters of the coupled system and to maximize the relative lifetime of a selected mode.
View Article and Find Full Text PDFColloidal media with well-defined optical properties have been widely used as model systems in many fundamental and applied studies of light-matter interactions in complex media. Recent progress in the field of engineered nanoscale optical materials with fundamentally new physical properties opens new opportunities for tailoring the properties of colloids. In this work, we experimentally demonstrate the evolution of the optical vortex beams of different topological charges propagating in engineered nano-colloidal suspension of negative polarizability with saturable nonlinearities.
View Article and Find Full Text PDFThe future success of semiconductor technology relies on the continuing reduction of the feature size, allowing more components per chip and higher speed. Optical metamaterial-based hyperlens exhibit the ability for spatial pattern compression from the micro- to nanoscale, potentially addressing the ever-increasing demand of photolithograpy for inexpensive, all-optical nanoscale pattern recoding. Here, we demonstrate a photolithography system enabling a feature size of 80 nm using a 405 nm laser source.
View Article and Find Full Text PDFRecently, we have predicted that the modulation instability of optical vortex solitons propagating in nonlinear colloidal suspensions with exponential saturable nonlinearity leads to formation of necklace beams (NBs). Here, we investigate the dynamics of NB formation and propagation, and demonstrate a variety of optical beam structures emerging upon vortex beam propagation in engineered nonlinear colloidal medium. In particular, we show that the distance at which the NB is formed depends on the input power of the vortex beam.
View Article and Find Full Text PDF