Technol Health Care
January 2025
Background: Fiber post (FP) reinforced restoration was widespread in endodontically treated teeth, of which the retention was closely related to fit and operation process. However, the question whether the fit and self-etching adhesive (SED) affect the success of FP restoration still remained unclear.
Objective: This research aimed to assess how the fit and self-etching adhesive (SED) impact the pull-out bond strength (BS) of glass fiber-reinforced composite posts from the root canal dentin.
Modifying the drug-release capacity of titanium implants is essential for maintaining their long-term functioning. Titanium dioxide nanotube (TNT) arrays, owing to their drug release capacity, are commonly used in the biomaterial sphere. Their unique half open structure and arrangement in rows increase the drug release capacity.
View Article and Find Full Text PDFIn order to enhance the antibacterial property of titanium implant without inducing obvious cytotoxicity, the combination of Ag nanolayer and micro/nano surface structure was conducted by magnetron sputtering and hot-alkali treatment in this study. A series of specimens (AH-Ti, AH-Ti/Ag0.25, AH-Ti/Ag1, AH-Ti/Ag2, and AH-Ti/Ag5) were prepared with different sputtering durations (0 min, 0.
View Article and Find Full Text PDFIntroduction: An antibacterial and pro-osteogenic coaxially electrospun nanofiber guided bone regeneration (GBR) membrane was fabricated to satisfy the complicated and phased requirements of GBR process.
Methods: In this study, we synthesize dual-functional coaxially electrospun nanofiber GBR membranes by encapsulating parathyroid hormone (PTH) in the core layer and magnesium oxide nanoparticles (MgONPs) in the shell layer (MgONPs-PCL/PTH-PCL). Herein, the physicochemical characterization of MgONPs-PCL/PTH-PCL, the release rates of MgONPs and PTH, and antibacterial efficiency of the new membrane were evaluated.
Developing smart hydrogels with integrated and suitable properties to treat intervertebral disc degeneration (IVDD) by minimally invasive injection is of high desire in clinical application and still an ongoing challenge. In this work, an extraordinary injectable hydrogel PBNPs@OBG (Prussian blue nanoparticles@oxidized hyaluronic acid/borax/gelatin) with promising antibacterial, antioxidation, rapid gelation, and self-healing characteristics was designed via dual-dynamic-bond cross-linking among the oxidized hyaluronic acid (OHA), borax, and gelatin. The mechanical performance of the hydrogel was studied by dynamic mechanical analysis.
View Article and Find Full Text PDFIn order to clarify the prognosis of intentional replantation used for palatogingival groove treatment for long-term follow-up observation, the case of a patient with a maxillary lateral incisor with palatogingival groove was investigated. The intentional replantation was carried out to preserve the tooth. The periodontal pocket and the apical bone defect were almost completely repaired at 12-month follow-up.
View Article and Find Full Text PDFMagnesium (Mg) alloys have a wide range of biomaterial applications, but their lack of biocompatibility and osteoinduction property impedes osteointegration. In order to enhance the bioactivity of Mg alloy, a composite coating of fluorinated hydroxyapatite (FHA) and tantalum (Ta) was first developed on the surface of the alloy through thermal synthesis and magnetron sputtering technologies in this study. The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) mapping, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and water contact angle measurement (WCA), which characterized the surface alternation and confirmed the deposition of the target FHA/Ta coating.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
August 2021
The zirconia implants have a wide range of clinical applications, however, the biological inertness and lack of osteoinductive properties limit these applications. Strontium possesses superior biocompatibility and excellent osteogenic properties. To take advantage of these, the strontium titanate-coated zirconia implants were prepared in this study by sandblasting, acid etching, and magnetron sputtering, followed by the analysis of the biological behavior.
View Article and Find Full Text PDFAlthough titanium dioxide nanotubes (TNTs) had great potential to promote osteogenesis, their weak bonding strength with titanium substrates greatly limited their clinical application. The objective of this study was to maintain porosity and improve the stability of TNT coatings by preparing some micro-patterned mesoporous/nanotube (MP/TNT) structures via a photolithography-assisted anodization technology. The adhesion strength of different coatings was studied by ultrasonic cleaning machine and scratch tester.
View Article and Find Full Text PDFMany studies have shown that the size of nanotube (NT) can significantly affect the behavior of osteoblasts on titanium-based materials. But the weak bonding strength between NT and substrate greatly limits their application. The objective of this study was to compare the stability of NT and nanopore (NP) coatings, and further prepare antibacterial titanium-based materials by loading LL37 peptide in NP structures.
View Article and Find Full Text PDFWe have developed a surface texturing process for pyramidal surface features along with an indium tin oxide (ITO) coating process to fabricate super-hydrophilic conductive surfaces. The contact angle of a water droplet was less than 5 degrees, which means that an extremely high wettability is achievable on super-hydrophilic surfaces. We have also fabricated a super-hydrophobic conductive surface using an additional coating of polytetrafluoroethylene (PTFE) on the ITO layer coated on the textured Si surface; the ITO and PTFE films were deposited by using a conventional sputtering method.
View Article and Find Full Text PDF