Medical devices that contact non-intact skin or mucous membranes are considered semi-critical devices and must undergo high-level disinfection (HLD) before use. Studies have identified several potential limitations of UV-C for HLD of semi-critical medical devices, including a lack of data demonstrating that UV-C irradiance can be uniformly applied to complex surfaces that contain grooves, notches and imperfections. This study focused on ultrasound probes as commonly used medical devices to show the distribution of irradiance on these surfaces.
View Article and Find Full Text PDFBackground: Accurate molecular assays for prediction of antimicrobial resistance (AMR)/susceptibility in Neisseria gonorrhoeae (Ng) can offer individualized treatment of gonorrhoea and enhanced AMR surveillance.
Objectives: We evaluated the new ResistancePlus® GC assay and the GC 23S 2611 (beta) assay (SpeeDx), for prediction of resistance/susceptibility to ciprofloxacin and azithromycin, respectively.
Methods: Nine hundred and sixty-seven whole-genome-sequenced Ng isolates from 20 European countries, 143 Ng-positive (37 with paired Ng isolates) and 167 Ng-negative clinical Aptima Combo 2 (AC2) samples, and 143 non-gonococcal Neisseria isolates and closely related species were examined with both SpeeDx assays.
Antibiotic resistance in is rising globally, and resistance-guided diagnostics can facilitate targeted and timely treatment. The ResistancePlus MG FleXible (RPMG Flex) assay for the detection of and macrolide resistance-mediating mutations (MRMM) was evaluated for analytical sensitivity, specificity, reproducibility, and inhibition in the presence of interfering substances by simulating -negative pooled urine and swab matrices with cultures. Furthermore, the clinical sensitivity of the assay was evaluated and compared with a reference real-time PCR assay.
View Article and Find Full Text PDFcauses a common sexually transmitted infection with a marked propensity to develop antimicrobial resistance. As few treatment options exist, this poses significant challenges to clinicians. Recent diagnostic advances have resulted in tests that report the simultaneous detection of and any resistance to macrolides, the first-line treatment.
View Article and Find Full Text PDFBackground: The emergence of drug-resistant Neisseria gonorrhoeae has prompted the development of rapid molecular assays designed to determine antimicrobial susceptibility. One common assay uses high-resolution melt analysis to target codon 91 of the gyrase A gene (gyrA) to predict N. gonorrhoeae susceptibility to ciprofloxacin.
View Article and Find Full Text PDFBackground: Carbapenemase-producing organisms (CPOs) have emerged as antibiotic-resistant bacteria of global concern. Here we assessed the performance of the Carba (beta) assay, a multiplex real-time PCR assay developed by SpeeDx for the detection of key carbapenemase-encoding genes: KPC, NDM, OXA-48-like, IMP-4-like, and VIM.
Methods: DNA extracts of 180 isolates were tested with the Carba (beta) assay, using previously validated in-house TaqMan probe assays for the relevant carbapenemase genes as the reference standard.
Objectives: To evaluate the performance of the ResistancePlus GC (beta) assay for the simultaneous detection of Neisseria gonorrhoeae and gyrA S91 markers of resistance (S91F) and susceptibility (WT) to ciprofloxacin, from both clinical specimens and isolates.
Methods: Performance was assessed on several sample banks, including N. gonorrhoeae isolates (n = 822), non-gonococcal isolates (n = 110), N.
Diagnostics (Basel)
November 2018
Background: PIK3CA pathways are the most frequently mutated oncogenic pathway in head and neck squamous cell carcinoma (HNSCC), including virally driven HNCs. PIK3CA is involved in the PI3K-PTEN-mTOR signalling pathway. PIK3CA has been implicated in HNSCC progression and PIK3CA mutations may serve as predictive biomarkers for therapy selection.
View Article and Find Full Text PDFBackground: Whilst qPCR provides an extremely powerful tool for genetic analysis, some applications such as multiplexing variant alleles (eg SNPs, point mutations or deletions), remain challenging using current primer/probe systems. The novel design features of PlexPrimers allow sensitive, multiplexed analysis of variant alleles even when these are tightly clustered.
Method: PlexPrimers were combined with PlexZymes in qPCR assays for the detection of SNPs in human absorption, distribution, metabolism, and excretion (ADME) genes; clustered mutations in the 23S rRNA gene which confer antibiotic resistance to Mycoplasma genitalium; and deletions within the human epidermal growth factor receptor (EGFR) gene.
Polypyrimidine tract binding protein (PTBP1) is a widely expressed RNA binding protein that acts as a regulator of alternative splicing and of cytoplasmic mRNA functions. Vertebrates contain two closely-related paralogs with >75% amino acid sequence identity. Early replacement of PTBP1 by PTBP2 during neuronal differentiation causes a concerted set of splicing changes.
View Article and Find Full Text PDFTranscription factors (TFs) are often regarded as being composed of a DNA-binding domain (DBD) and a functional domain. The two domains are considered separable and autonomous, with the DBD directing the factor to its target genes and the functional domain imparting transcriptional regulation. We examined an archetypal zinc finger (ZF) TF, Krüppel-like factor 3 with an N-terminal domain that binds the corepressor CtBP and a DBD composed of three ZFs at its C-terminus.
View Article and Find Full Text PDFBackground: In addition to acting as an RNA quality control pathway, nonsense-mediated mRNA decay (NMD) plays roles in regulating normal gene expression. In particular, the extent to which alternative splicing is coupled to NMD and the roles of NMD in regulating uORF containing transcripts have been a matter of debate.
Results: In order to achieve a greater understanding of NMD regulated gene expression we used 2D-DiGE proteomics technology to examine the changes in protein expression induced in HeLa cells by UPF1 knockdown.
To gain global insights into the role of the well-known repressive splicing regulator PTB, we analyzed the consequences of PTB knockdown in HeLa cells using high-density oligonucleotide splice-sensitive microarrays. The major class of identified PTB-regulated splicing event was PTB-repressed cassette exons, but there was also a substantial number of PTB-activated splicing events. PTB-repressed and PTB-activated exons showed a distinct arrangement of motifs with pyrimidine-rich motif enrichment within and upstream of repressed exons but downstream of activated exons.
View Article and Find Full Text PDF