Publications by authors named "Lisunova Y"

Nano-structured phase masks offer intriguing possibilities in electron-beam shaping. The fabrication of such phase masks is typically achieved by focused (Ga-)ion beam milling of thin membranes. To overcome the problem of Ga implantation in the phase mask, we explore the fabrication of silicon-nitride phase masks using thermal scanning probe lithography combined with wet and dry etching.

View Article and Find Full Text PDF

Applications for high resolution 3D profiles, so-called grayscale lithography, exist in diverse fields such as optics, nanofluidics and tribology. All of them require the fabrication of patterns with reliable absolute patterning depth independent of the substrate location and target materials. Here we present a complete patterning and pattern-transfer solution based on thermal scanning probe lithography (t-SPL) and dry etching.

View Article and Find Full Text PDF

The combination of complementary measurement techniques has become a frequent approach to improve scientific knowledge. Pairing of the high lateral resolution scanning force microscopy (SFM) with the spectroscopic information accessible through scanning transmission soft x-ray microscopy (STXM) permits assessing physical and chemical material properties with high spatial resolution. We present progress from the NanoXAS instrument towards using an SFM probe as an x-ray detector for STXM measurements.

View Article and Find Full Text PDF

To minimize parasitic doping effects caused by uncontrolled material adsorption, graphene is often investigated under vacuum. Here we report an entirely unexpected phenomenon occurring in vacuum systems, namely strong n-doping of graphene due to chemical species generated by common ion high-vacuum gauges. The effect-reversible upon exposing graphene to air-is significant, as doping rates can largely exceed 10(12) cm(-2) h(-1), depending on pressure and the relative position of the gauge and the graphene device.

View Article and Find Full Text PDF

Carbon nanotubes used as conductive atomic force microscopy probes are expected to withstand extremely high currents. However, in existing prototypes, significant self-heating results in rapid degradation of the nanotube probe. Here, we investigate an alternative probe design, fabricated by dielectric encapsulation of multiwalled carbon nanotubes, which can support unexpectedly high currents with extreme stability.

View Article and Find Full Text PDF

Using single-walled carbon nanotubes homogeneously coated with ferromagnetic metal as ultra-high resolution magnetic force microscopy probes, we investigate the key image formation parameters and their dependence on coating thickness. The crucial step of introducing molecular beam epitaxy for deposition of the magnetic coating allows highly controlled fabrication of tips with small magnetic volume, while retaining high magnetic anisotropy and prolonged lifetime characteristics. Calculating the interaction between the tips and a magnetic sample, including hitherto neglected thermal noise effects, we show that optimal imaging is achieved for a finite, intermediate-thickness magnetic coating, in excellent agreement with experimental observations.

View Article and Find Full Text PDF