Bioactive materials have emerged as a promising alternative to conventional restorative materials as part of more conservative dentistry. The aim of this study was to evaluate and compare the shear bond strength (SBS) and microleakage of a new bioactive restorative material, two bulk-fill restorative composites, and a conventional composite at 24 h, 4 weeks, and 8 weeks. Three hundred and sixty molars and premolars were divided into four groups: ACTIVA™ BioACTIVE Restorative™, Filtek™ Bulk-Fill Restorative Composite, Tetric N-Ceram Bulk-Fill Composite, and G-aenial Composite.
View Article and Find Full Text PDFThe aim of this study was to perform a narrative review to identify the modifications applied to the chemical structure of third- and fourth-generation zirconia ceramics and to determine the influence of these changes on the mechanical and optical properties. A bibliographical search using relevant keywords was conducted in the PubMed and EBSCO databases. The abstracts and full texts of the resulting articles were reviewed for final inclusion.
View Article and Find Full Text PDFStatement Of Problem: Prosthodontic treatment sometimes requires a long-term interim fixed dental prosthesis (FDP) until the definitive restoration can be cemented. However, some interim materials are weak and do not have an adequate marginal seal.
Purpose: The purpose of this study was to compare the marginal fit and fracture strengths of interim FDPs fabricated by using a direct technique with different materials (Structur 3, Trim, and DuraLay) with interim prostheses (Telio CAD) made with a computer-aided design and computer-aided manufacturing (CAD/CAM) system.