Publications by authors named "Liske Versieren"

Metal contamination generally occurs as mixtures. However, it is yet unresolved how to address metal mixtures in risk assessment. Therefore, using consistent methodologies, we have set up experiments to identify which mixture model applies best at low-level effects, i.

View Article and Find Full Text PDF

Zinc (Zn) and arsenic (As) are typically present as mixed contaminants in mining-impacted areas; however, their joined effects have rarely been evaluated. The present study was set up to test whether the Zn and H AsO (hereafter, As) mixture toxicity to plants is additive or whether interactions occur. Barley (Hordeum vulgare) root elongation was measured in resin buffered nutrient solutions.

View Article and Find Full Text PDF

The analysis of metal mixture toxicity to plants is complicated by mutual interactions. In the present study, mixture effects of zinc (Zn), cadmium (Cd), and copper (Cu) on barley (Hordeum vulgare L.) root elongation were analyzed using oxidative stress parameters.

View Article and Find Full Text PDF

Metal contamination is mostly a mixture of different metals, and these multicomponent mixtures can produce significant mixture effects. The present study was set up to investigate the toxicity of multiple metal mixtures of Cu, Ni, Cd, and Zn to plants at metal doses individually causing low-level phytotoxic effects. Barley (Hordeum vulgare L.

View Article and Find Full Text PDF

Soil contamination with copper (Cu) is often associated with zinc (Zn), and the biological response to such mixed contamination is complex. Here, we investigated Cu and Zn mixture toxicity to Hordeum vulgare in three different soils, the premise being that the observed interactions are mainly due to effects on bioavailability. The toxic effect of Cu and Zn mixtures on seedling root elongation was more than additive (i.

View Article and Find Full Text PDF

There are only a limited number of studies that have developed appropriate models which incorporate bioavailability to estimate mixture toxicity. Here, we explored the applicability of the extended biotic ligand model (BLM) and the WHAM-F(tox) approach for predicting and interpreting mixture toxicity, with the assumption that interactions between metal ions obey the BLM theory. Seedlings of lettuce Lactuca sativa were exposed to metal mixtures (Cu-Ni, Cu-Cd, and Ni-Cd) contained in hydroponic solutions for 4 days.

View Article and Find Full Text PDF

Natural dissolved organic matter (DOM) can have contrasting effects on metal bioaccumulation in algae because of complexation reactions that reduce free metal ion concentrations and because of DOM adsorption to algal surfaces which promote metal adsorption. This study was set up to reveal the role of different natural DOM samples on cadmium (Cd) uptake by the green algae Pseudokirchneriella subcapitata (Korschikov). Six different DOM samples were collected from natural freshwater systems and isolated by reverse osmosis.

View Article and Find Full Text PDF