Intestinal stem cells (ISCs) are maintained by a niche mechanism, in which multiple ISCs undergo differential fates where a single ISC clone ultimately occupies the niche. Importantly, mutations continually accumulate within ISCs creating a potential competitive niche environment. Here we use single cell lineage tracing following stochastic transforming growth factor β receptor 2 (TgfβR2) mutation to show cell autonomous effects of TgfβR2 loss on ISC clonal dynamics and differentiation.
View Article and Find Full Text PDFThe DNA mismatch repair (MMR) machinery in mammals plays critical roles in both mutation avoidance and spermatogenesis. Meiotic analysis of knockout mice of two different MMR genes, Mlh1 and Mlh3, revealed both male and female infertility associated with a defect in meiotic crossing over. In contrast, another MMR gene knockout, Pms2 (Pms2(ko/ko)), which contained a deletion of a portion of the ATPase domain, produced animals that were male sterile but female fertile.
View Article and Find Full Text PDFAlthough Apc mutation is widely considered an initiating event in colorectal cancer, little is known about the earliest stages of tumorigenesis following sporadic Apc loss. Therefore, we have utilized a novel mouse model that facilitates the sporadic inactivation of Apc via frameshift reversion of Cre in single, isolated cells and subsequently tracks the fates of Apc-deficient intestinal cells. Our results suggest that consistent with Apc being a 'gatekeeper', loss of Apc early in life during intestinal growth leads to adenomas or increased crypt fission, manifested by fields of mutant but otherwise normal-appearing crypts.
View Article and Find Full Text PDFAPC is considered a gatekeeper for colorectal cancer (CRC). Cells with heterozygous APC mutations have altered expression profiles suggesting that the first APC hit may help set the stage for subsequent transformation. Therefore, we measured transformation efficiency following what we have designated as 'simultaneous' versus 'stepwise' Apc loss.
View Article and Find Full Text PDFThe DNA mismatch repair (MMR) protein dimer MutLα is comprised of the MutL homologues MLH1 and PMS2, which each belong to the family of GHL ATPases. These ATPases undergo functionally important conformational changes, including dimerization of the NH₂-termini associated with ATP binding and hydrolysis. Previous studies in yeast and biochemical studies with the mammalian proteins established the importance of the MutLα ATPase for overall MMR function.
View Article and Find Full Text PDFDNA repair defects are frequently encountered in human cancers. These defects are utilized by traditional therapeutics but also offer novel cancer treatment strategies based on synthetic lethality. To determine the consequences of combined Fanconi anemia (FA) and mismatch repair pathway inactivation, defects in Fancd2 and Mlh1 were combined in one mouse model.
View Article and Find Full Text PDFWe developed a cell division-activated Cre-lox system for stochastic recombination of loxP-flanked loci in mice. Cre activation by frameshift reversion is modulated by DNA mismatch-repair status and occurs in individual cells surrounded by normal tissue, mimicking spontaneous cancer-causing mutations. This system should be particularly useful for delineating pathways of neoplasia, and determining the developmental and aging consequences of specific gene alterations.
View Article and Find Full Text PDFReplication forks stall at DNA lesions or as a result of an unfavorable replicative environment. These fork stalling events have been associated with recombination and gross chromosomal rearrangements. Recombination and fork bypass pathways are the mechanisms accountable for restart of stalled forks.
View Article and Find Full Text PDFMutations in DNA mismatch repair (MMR) lead to increased mutation rates and higher recombination between similar, but not identical sequences, as well as resistance to certain DNA methylating agents. Recently, a component of human MMR machinery, MutLalpha, has been shown to display a latent endonuclease activity. The endonuclease active site appears to include a conserved motif, DQHA(X)(2)E(X)(4)E, within the COOH-terminus of human PMS2.
View Article and Find Full Text PDFThe hPMS2 mutation E705K is associated with Turcot syndrome. To elucidate the pathogenesis of hPMS2-E705K, we modeled this mutation in yeast and characterized its expression and effects on mutation avoidance in mammalian cells. We found that while hPMS2-E705K (pms1-E738K in yeast) did not significantly affect hPMS2 (Pms1p in yeast) stability or interaction with MLH1, it could not complement the mutator phenotype in MMR-deficient mouse or yeast cells.
View Article and Find Full Text PDFDefects in genes associated with DNA mismatch repair (MMR) have been linked to hereditary colon cancer. Because the MMR pathway includes multiple factors with both overlapping and divergent functions, we sought to compare the impact of deficiencies in each of several MMR genes on genetic instability using a collection of knock-out mouse models. We investigated mutation frequencies and patterns in MMR-deficient mice using two transgenic reporter genes, supFG1 and cII, in the context of mice deficient for Pms2, Mlh1, Msh2, Msh3 or Msh6 or both Msh2 and Msh3 or both Msh3 and Msh6.
View Article and Find Full Text PDFInherited defects in genes associated with DNA mismatch repair (MMR) have been linked to familial colorectal cancer. Cells deficient in MMR are genetically unstable and demonstrate a tolerance phenotype in response to certain classes of DNA damage. Some sporadic human cancers also show abnormalities in MMR gene function, typically due to diminished expression of one of the MutL homologs, MLH1.
View Article and Find Full Text PDFDuring meiosis, recombination between homologous chromosomes generates crossover (CR) and noncrossover (NCR) products. CRs establish connections between homologs, whereas intermediates leading to NCRs have been proposed to participate in homologous pairing. How these events are differentiated and regulated remains to be determined.
View Article and Find Full Text PDFMammalian MutL homologues function in DNA mismatch repair (MMR) after replication errors and in meiotic recombination. Both functions are initiated by a heterodimer of MutS homologues specific to either MMR (MSH2-MSH3 or MSH2-MSH6) or crossing over (MSH4-MSH5). Mutations of three of the four MutL homologues (Mlh1, Mlh3, and Pms2) result in meiotic defects.
View Article and Find Full Text PDFNull mutations in DNA mismatch repair (MMR) genes elevate both base substitutions and insertions/deletions in simple sequence repeats. Data suggest that during replication of simple repeat sequences, polymerase slippage can generate single-strand loops on either the primer or template strand that are subsequently processed by the MMR machinery to prevent insertions and deletions, respectively. In the budding yeast Saccharomyces cerevisiae and mammalian cells, MMR appears to be more efficient at repairing mispairs comprised of loops on the template strand compared to loops on the primer strand.
View Article and Find Full Text PDFGerm line DNA mismatch repair mutations in MLH1 and MSH2 underlie the vast majority of hereditary non-polyposis colon cancer. Four mammalian homologues of Escherichia coli MutL heterodimerize to form three distinct complexes: MLH1/PMS2, MLH1/MLH3, and MLH1/PMS1. Although MLH1/PMS2 is generally thought to have the major MutL activity, the precise contributions of each MutL heterodimer to mismatch repair functions are poorly understood.
View Article and Find Full Text PDFExo1 was first isolated as a 5' --> 3' exonuclease activity induced during meiosis in fission yeast and since that time has been implicated in a multitude of eukaryotic DNA metabolic pathways that include DNA repair, recombination, replication, and telomere integrity. Involvement in multiple pathways affecting genomic stability makes EXO1 a logical target for mutation during oncogenesis. Here, we review studies in several experimental systems that shed light on the role of Exo1 in these DNA transaction pathways, particularly those that may relate to oncogenesis.
View Article and Find Full Text PDFThe mismatch repair (MMR) protein Msh2 has been shown to function in the apoptotic response to alkylating agents in vivo. Here, we extend these studies to the MutL homologues (MLH) Mlh1 and Pms2 by analysing the apoptotic response within the small intestine of gene targeted strains. We demonstrate significant differences between Msh2, Mlh1 and Pms2 mutations in influencing apoptotic signalling following 50mg/kg N-methyl-nitrosourea (NMNU), with no obvious reliance upon either Mlh1 or Pms2.
View Article and Find Full Text PDFDefects in DNA mismatch repair (MMR) have been implicated in the genesis of a diverse set of human cancers. Recent studies have suggested that one of the targets of MMR is the neurofibromatosis 1 (NF1) gene. To evaluate the contribution of Mlh1 MMR deficiency to Nf1 tumorigenesis, Mlh1-/-;Nf1+/- mice were generated.
View Article and Find Full Text PDFDNA Repair (Amst)
November 2002
Exo1p is a member of the Rad2p family of structure-specific nucleases that contain conserved N and I nuclease domains. Exo1p has been implicated in numerous DNA metabolic processes, such as recombination, double-strand break repair and DNA mismatch repair (MMR). In this report, we describe in vitro and in vivo characterization of full-length wild-type and mutant forms of Exo1p.
View Article and Find Full Text PDFDNA mismatch repair (MMR) is the process by which incorrectly paired DNA nucleotides are recognized and repaired. A germline mutation in one of the genes involved in the process may be responsible for a dominantly inherited cancer syndrome, hereditary nonpolyposis colon cancer. Cancer progression in predisposed individuals results from the somatic inactivation of the normal copy of the MMR gene, leading to a mutator phenotype affecting preferentially repeat sequences (microsatellite instability, MSI).
View Article and Find Full Text PDFMismatch-repair (MMR) systems promote eukaryotic genome stability by removing errors introduced during DNA replication and by inhibiting recombination between nonidentical sequences (spellchecker and antirecombination activities, respectively). Following a common mismatch-recognition step effected by MutS-homologous Msh proteins, homologs of the bacterial MutL ATPase (predominantly the Mlh1p-Pms1p heterodimer in yeast) couple mismatch recognition to the appropriate downstream processing steps. To examine whether the processing steps in the spellchecker and antirecombination pathways might differ, we mutagenized the yeast PMS1 gene and screened for mitotic separation-of-function alleles.
View Article and Find Full Text PDFDiet is an important risk factor for many cancers. High fat/low calcium (HFLC) diets are associated with increased tumorigenesis, whereas caloric restriction (CR) reproducibly increases lifespan and decreases tumors. Mutations are involved in aging and cancer, and different diets may alter mutagenesis.
View Article and Find Full Text PDFMeiotic recombination was studied in DNA mismatch repair (MMR)-deficient mice using a strain carrying a Pms2 knockout mutation. Using single-sperm typing, recombination was analyzed over five intervals on four chromosomes in four Pms2 -/- animals. A total of 1936 meioses were studied and compared to 1848 meioses from three Pms2 +/+ controls.
View Article and Find Full Text PDF