Background: By age 40 years, adults with Down syndrome (DS) develop Alzheimer’s disease (AD) pathology and progress to dementia in their 60s. Despite minimal systemic vascular risk factors, individuals with DS have MRI evidence of cerebrovascular injury that progresses with AD severity, suggesting an intrinsic vascular component to DS‐AD that may interact with neuroinflammatory processes to promote tau pathology and cognitive decline. In the current study we examined whether cerebrovascular disease (CVD) burden and inflammation/astrocytosis independently and interactively were associated with incident diagnosis among adults with DS.
View Article and Find Full Text PDFBackground: Adults with Down syndrome (DS) overproduce amyloid precursor protein, develop amyloid plaques at an early age, and are diagnosed with Alzheimer’s disease (AD) dementia at a high frequency. There is emerging evidence that cerebrovascular disease is elevated across the AD continuum in older adults with DS, independent of age and vascular risk, around the same time as amyloid and tau, but the regional rates of accumulation within individuals are unknown.
Method: Adults with DS from the multisite Alzheimer’s Biomarker Consortium‐Down Syndrome study (ABC‐DS; n=78; age=50±6; 40% women) have two timepoints of T2 FLAIR MRI (1.
Background: Adults with Down syndrome (DS) overproduce amyloid precursor protein, develop amyloid plaques at an early age, and are diagnosed with Alzheimer’s disease (AD) dementia at a high frequency. There is emerging evidence that cerebrovascular disease is elevated across the AD continuum in older adults with DS, independent of age and vascular risk, around the same time as amyloid and tau, but the regional rates of accumulation within individuals are unknown.
Method: Adults with DS from the multisite Alzheimer’s Biomarker Consortium‐Down Syndrome study (ABC‐DS; n = 78; age = 50±6; 40% women) have two timepoints of T2 FLAIR MRI (1.
Down syndrome (DS) or trisomy 21 (T21) is present in a significant number of children and adults around the world and is associated with cognitive and medical challenges. Through research, the T21 Research Society (T21RS), established in 2014, unites a worldwide community dedicated to understanding the impact of T21 on biological systems and improving the quality of life of people with DS across the lifespan. T21RS hosts an international conference every two years to support collaboration, dissemination, and information sharing for this goal.
View Article and Find Full Text PDFAdults with Down syndrome have a genetic form of Alzheimer's disease (AD) and evidence of cerebrovascular disease across the AD continuum, despite few systemic vascular risk factors. The onset and progression of AD in Down syndrome is highly age-dependent, but it is unknown at what age cerebrovascular disease emerges and what factors influence its severity. In the Alzheimer's Biomarker Consortium-Down Syndrome study (ABC-DS; n = 242; age = 25-72), we estimated the age inflection point at which MRI-based white matter hyperintensities (WMH), enlarged perivascular spaces (PVS), microbleeds, and infarcts emerge in relation to demographic data, risk factors, amyloid and tau, and AD diagnosis.
View Article and Find Full Text PDFImportance: By age 40 years over 90% of adults with Down syndrome (DS) have Alzheimer's disease (AD) pathology and most progress to dementia. Despite having few systemic vascular risk factors, individuals with DS have elevated cerebrovascular disease (CVD) markers that track with the clinical progression of AD, suggesting a role for CVD that is hypothesized to be mediated by inflammatory factors.
Objective: To examine the pathways through which small vessel CVD contributes to AD-related pathophysiology and neurodegeneration in adults with DS.
Front Cell Neurosci
September 2022
Down syndrome (DS) arises from the triplication of human chromosome 21 and is considered the most common genetic cause of intellectual disability. Glial cells, specifically astroglia and microglia, display pathological alterations that might contribute to DS neuropathological alterations. Further, in middle adulthood, people with DS develop clinical symptoms associated with premature aging and Alzheimer's disease (AD).
View Article and Find Full Text PDFAims: The locus coeruleus (LC) is the main source of noradrenaline (NA) in the mammalian brain and has been found to degenerate during the initial stages of Alzheimer's disease (AD). Recent studies indicate that at late stages of the amyloid pathology, LC-pathological alterations accelerate AD-like pathology progression by interfering with the neuromodulatory and anti-inflammatory properties of NA. However, the impact of LC degeneration at the earliest stages of amyloidosis on the AD-like pathology is not well understood.
View Article and Find Full Text PDFThe risk of severe outcomes following respiratory tract infections is significantly increased in individuals over 60 years, especially in those with chronic medical conditions, i.e., hypertension, diabetes, cardiovascular disease, dementia, chronic respiratory disease, and cancer.
View Article and Find Full Text PDFBackground: Brain inflammation has been increasingly associated with early amyloid accumulation in Alzheimer's disease models; however, evidence of its occurrence in humans remains scarce. To elucidate whether amyloid deposition is associated with neuroinflammation and cognitive deficits, we studied brain inflammatory cytokine expression and cognitive decline in non-demented elderly individuals with and without cerebral amyloid-beta deposition.
Methods: Global cognition, episodic, working, and semantic memory, perceptual speed, visuospatial ability, and longitudinal decline (5.
The current SARS-CoV-2 outbreak, which causes COVID-19, is particularly devastating for individuals with chronic medical conditions, in particular those with Down Syndrome (DS) who often exhibit a higher prevalence of respiratory tract infections, immune dysregulation and potential complications. The incidence of Alzheimer's disease (AD) is much higher in DS than in the general population, possibly increasing further the risk of COVID-19 infection and its complications. Here we provide a biological overview with regard to specific susceptibility of individuals with DS to SARS-CoV-2 infection as well as data from a recent survey on the prevalence of COVID-19 among them.
View Article and Find Full Text PDFEpidemiological and experimental studies suggest that a disease-aggravating neuroinflammatory process is present at preclinical stages of Alzheimer's disease. Given that individuals with Down syndrome are at increased genetic risk of Alzheimer's disease and therefore develop the spectrum of Alzheimer's neuropathology in a uniform manner, they constitute an important population to study the evolution of neuroinflammation across the Alzheimer's continuum. Therefore, in this cross-sectional study, we characterized the brain inflammatory profile across the lifespan of individuals with Down syndrome.
View Article and Find Full Text PDFEpidemiological, preclinical, and clinical studies have suggested a role for microdose lithium in reducing Alzheimer's disease (AD) risk by modulating key mechanisms associated with AD pathology. The novel microdose lithium formulation, NP03, has disease-modifying effects in the McGill-R-Thy1-APP transgenic rat model of AD-like amyloidosis at pre-plaque stages, before frank amyloid-β (Aβ) plaque deposition, during which Aβ is primarily intraneuronal. Here, we are interested in determining whether the positive effects of microdose lithium extend into early Aβ post-plaque stages.
View Article and Find Full Text PDFBiomarker discovery is a major need for earlier dementia diagnosis. We evaluated a plasma signature of amyloid, metallo-proteinases (MMPs), and inflammatory markers in a cohort of at-risk individuals and individuals clinically diagnosed with probable Alzheimer's disease (pAD). Using multiplex arrays, we measured Aβ40, Aβ42, MMP-1, MMP-3, MMP-9, IFN-γ, TNF-α, IL-6, IL-8, and IL-10 in plasma from 107 individuals followed every 6 months for 3 years.
View Article and Find Full Text PDFThe complex multifactorial nature of polygenic Alzheimer's disease (AD) presents significant challenges for drug development. AD pathophysiology is progressing in a non-linear dynamic fashion across multiple systems levels - from molecules to organ systems - and through adaptation, to compensation, and decompensation to systems failure. Adaptation and compensation maintain homeostasis: a dynamic equilibrium resulting from the dynamic non-linear interaction between genome, epigenome, and environment.
View Article and Find Full Text PDFIntroduction: AF710B (aka ANAVEX 3-71) is a novel selective allosteric M1 muscarinic and sigma-1 receptor agonist. In 3×Tg-AD mice, AF710B attenuates cognitive deficits and decreases Alzheimer-like hallmarks. We now report on the long-lasting disease-modifying properties of AF710B in McGill-R-Thy1-APP transgenic (Tg) rats.
View Article and Find Full Text PDFIndividuals with Down syndrome are at increased risk of developing Alzheimer's disease due to increase gene dosage resulting from chromosome 21 triplication. Although virtually all adults with Down syndrome will exhibit the major neuropathological hallmarks that define Alzheimer's disease, not all of them will develop the clinical symptoms associated with this disorder (i.e.
View Article and Find Full Text PDFEvidence from human neuropathological studies indicates that the levels of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are compromised in Alzheimer's disease. However, the causes and temporal (pathology-dependent) evolution of these alterations are not completely understood. To elucidate these issues, we investigated the McGill-R-Thy1-APP transgenic rat, which exhibits progressive intracellular and extracellular amyloid-beta (Aβ) pathology and ensuing cognitive deficits.
View Article and Find Full Text PDFBasal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer's disease and Down's syndrome, and their atrophy contributes to the manifestation of dementia.
View Article and Find Full Text PDF