Pharmacologic stimulation of innate immune processes represents an attractive strategy to achieve multiple therapeutic outcomes including inhibition of virus replication, boosting antitumor immunity, and enhancing vaccine immunogenicity. In light of this we sought to identify small molecules capable of activating the type I interferon (IFN) response by way of the transcription factor IFN regulatory factor 3 (IRF3). A high throughput in vitro screen yielded 4-(2-chloro-6-fluorobenzyl)-N-(furan-2-ylmethyl)-3-oxo-3,4-dihydro-2H-benzo[b][1,4]thiazine-6-carboxamide (referred to herein as G10), which was found to trigger IRF3/IFN-associated transcription in human fibroblasts.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) is a member of the β-herpesvirus family that invariably occupies hosts for life despite a consistent multi-pronged antiviral immune response that targets the infection. This persistence is enabled by the large viral genome that encodes factors conferring a wide assortment of sophisticated, often redundant phenotypes that disable or otherwise manipulate impactful immune effector processes. The type I interferon system represents a first line of host defense against infecting viruses.
View Article and Find Full Text PDFThe cellular innate immune response represents the initial reaction of a host against infecting pathogens. Host cells detect incoming microbes by way of a large and expanding array of receptors that react with evolutionarily conserved molecular patterns exhibited by microbial intruders. These receptors are responsible for initiating signaling that leads to both transcriptional activation of immunologically important genes as well as protease-dependent processing of cellular proteins.
View Article and Find Full Text PDF