Colloids Surf B Biointerfaces
January 2025
In this study, the covalent organic framework immobilized Rhizomucor miehie lipase COF@RML as a novel biocatalyst was applied in the enzymatic synthesis of OPO structured lipids (1, 3-dioleoyl-2-palmitoylglycerol). The impact of reaction medium, substrate molar ratio, enzyme addition amount, reaction time and temperature on the enzymatic synthesis of OPO structured lipids were studied. Furthermore, the effects of ultrasonic power and ultrasonic time on the synthesis of OPO structural lipids were studied.
View Article and Find Full Text PDFA large quantity of orange peel waste (OPW) is generated per year, yet effective biorefinery methods are lacking. In this study, Trichosporonoides oedocephalis ATCC 16958 was employed for hydrolyzing OPW to produce soluble sugars. Glycosyl hydrolases from Paenibacillussp.
View Article and Find Full Text PDFPurpose: Erythritol is a valuable compound as sweetener and chemical material however cannot be fermented from the abundant substrate xylose.
Methods: The strain Trichosporonoides oedocephalis ATCC 16958 was employed to produce polyols including xylitol and erythritol by metabolic engineering approaches.
Results: The introduction of a substrate-specific ribose-5-phosphate isomerase endowed T.
Plant-derived insecticide-neonicotinoid insecticides (NIs) played a crucial role in the development of agriculture and food industry in recent years. Nevertheless, synthesis of these nitrogen-containing heterocyclic compounds with an effective and greener routing remains challenging especially to the notion raise of "green chemistry" and "atom economy". While bio-catalyzed methods mediated by nicotinate dehydrogenase (NDHase) then provide an alternative.
View Article and Find Full Text PDFThe production of 5-hydroxymethylfurfural (5-HMF) from cellulose catalyzed by a series of transition metal chlorides (i.e. FeCl, RuCl, VCl, TiCl, MoCl and CrCl) was studied in biphasic system.
View Article and Find Full Text PDFIonic liquids (ILs) have been applied as an environmentally friendly solvent in the pretreatment of lignocellulosic biomass for more than a decade. The ILs involved pretreatment processes for cellulases mediated saccharification lead to both the breakdown of cellulose crystallinity and the decrease of lignin content, thereby improving the solubility of cellulose and the accessibility of cellulase. However, most cellulases are partially or completely inactivated in the presence of even low amount of ILs.
View Article and Find Full Text PDFIn this study, we attempted to find new and efficient microbial enzymes for producing rare sugars. A ribose-5-phosphate isomerase B (OsRpiB) was cloned, overexpressed, and preliminarily purified successfully from a newly screened sp. CSL1, which could catalyze the isomerization reaction of rare sugars.
View Article and Find Full Text PDFErythritol, a well-known natural sweetener, is mainly produced by microbial fermentation. Various metal ions (Al, Cu, Mn, and Ni) were added to the culture medium of Trichosporonoides oedocephalis ATCC 16958 at 30 mg/L in shake flask cultures. Compared with controls, Cu increased the erythritol content by 86% and decreased the glycerol by-product by 31%.
View Article and Find Full Text PDFBackground: Flowthrough pretreatment of biomass is a critical step in lignin valorization via conversion of lignin derivatives to high-value products, a function vital to the economic efficiency of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization.
Results: In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL).
A cellulase producing strain was newly isolated from soil samples and identified as Paenibacillus sp. LLZ1. A novel aqueous-dimethyl sulfoxide (DMSO)/1-ethyl-3-methylimidazolium diethyl phosphate ([Emin]DEP)-cellulase system was designed and optimized.
View Article and Find Full Text PDFBackground: Pretreatment is a vital but expensive step in biomass biofuel production. Overall, most of this past effort has been directed at maximizing sugar yields from hemicellulose and cellulose through trials with different chemicals, operating conditions, and equipment configurations. Flowthrough pretreatment provides a promising platform to dissolution of lignocellulosic biomass to generate high yields of fermentable sugars and lignin for biofuels productions.
View Article and Find Full Text PDFAppl Biochem Biotechnol
November 2010
Ethanol can be produced from lignocellulosic biomass with the usage of ball milling pretreatment followed by enzymatic hydrolysis and fermentation. The sugar yields from lignocellulosic feed stocks are critical parameters for ethanol production process. The research results from this paper indicated that the yields of glucose and xylose were improved by adding any of the following dilute chemical reagents: H(2)SO(4), HCl, HNO(3), CH(3)COOH, HCOOH, H(3)PO(4), and NaOH, KOH, Ca(OH)(2), NH(3)·H(2)O in the ball milling pretreatment of corn stover.
View Article and Find Full Text PDFA cycle spray flow-through reactor was designed and used to pretreat corn stover in dilute sulfuric acid medium. The dilute sulfuric acid cycle spray flow-through (DCF) process enhanced xylose sugar yields and cellulose digestibility while increasing the removal of lignin. Within the DCF system, the xylose sugar yields of 90-93% could be achieved for corn stover pretreated with 2% (w/v) dilute sulfuric acid at 95 degrees C during the optimal reaction time (90 min).
View Article and Find Full Text PDF