Publications by authors named "Lishi Wen"

Microglia were considered as immune cells in inflammation until their angiogenic role was widely understood. Although the pro-inflammatory role of microglia in retinal angiogenesis has been explored, little is known about its role in pro-angiogenesis and the microglia-endothelia interaction. Here, we report that galectin-3 (Gal3) released by activated microglia functions as a communicator between microglia and endothelia and competitively binds to Jag1, thus inhibiting the Notch signaling pathway and enhancing endothelial angiogenic metabolism to promote angiogenesis.

View Article and Find Full Text PDF

Pathological retinal neovascularization (RNV) is the main character of ischemic ocular diseases, which causes severe visual impairments. Though retinal microglia are well acknowledged to play important roles in both physiological and pathological angiogenesis, the molecular mechanisms by which microglia communicates with endothelial cells (EC) remain unknown. In this study, using single-cell RNA sequencing, we revealed that the pro-inflammatory secreted protein Spp1 was the most upregulated gene in microglia in the mouse model of oxygen-induced retinopathy (OIR).

View Article and Find Full Text PDF

In recent years, in-depth research on anti-tumor therapy has brought the emergence of new active chemotherapeutic agents and combination regimens. However, as one of them, taxane drugs are widely used in clinical practice, but it should be noted that many side reactions caused by their application bring some difficulties to routine management. Among the side reactions related to taxane anti-tumor therapy, ocular adverse reactions are occasionally reported and are not life-threatening but may seriously affect patients' life quality.

View Article and Find Full Text PDF

In this work, an effective approach to synthesize large-area Cu(2)S hierarchical nanotree arrays is presented: Cu nanowire arrays synthesized via template-assisted electrodeposition are used as precursors for the self-growth of branched Cu(2)S nanotree arrays by a gas-solid reaction in H(2)S atmosphere at room temperature. The branched Cu(2)S nanotrees with a high aspect ratio are vertically aligned over the Au film surface, forming a nanoscale 'forest'. Electron microscopy studies reveal that the treelike branched nanostructures are composed of an end-capped tubular Cu(2)S trunk and radially organized Cu(2)S nanorod branches over the trunk.

View Article and Find Full Text PDF