Publications by authors named "Lishan Fang"

Oxidative stress caused by pregnancy-induced hypertension syndrome significantly affects the health of pregnant women. Hydrogen sulfide is a typical gaseous signal molecule against oxidative stress, and it is of profound significance to develop a detection method. In this study, a stimuli-responsive hydrogel was constructed based on the coordination and bonding principle of metal ions and chitosan (CS) to realize the quantitative detection of hydrogen sulfide (HS).

View Article and Find Full Text PDF

Colorectal cancer (CRC) is characterized by a complex tumor inflammatory microenvironment, while angiogenesis and immunosuppression frequently occur concomitantly. However, the exact mechanism that controls angiogenesis and immunosuppression in CRC microenvironment remains unclear. Herein, we found that expression levels of lipid raft protein STOML2 were increased in CRC and were associated with advanced disease stage and poor survival outcomes.

View Article and Find Full Text PDF

Purpose: Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors. Endoplasmic reticulum stress (ERS) plays an essential role in PDAC progression. Here, we aim to identify the ERS-related genes in PDAC and build reliable risk models for diagnosis, prognosis and immunotherapy response of PDAC patients as well as investigate the potential mechanism.

View Article and Find Full Text PDF

is an important economic nut tree that is endemic to eastern China. As such, outbreaks of root rot disease in result in reduced yields and serious economic losses. Moreover, while soil bacterial communities play a crucial role in plant health and are associated with plant disease outbreaks, their diversity and composition in are not clearly understood.

View Article and Find Full Text PDF

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive lethal malignancy. An effective prognosis prediction model is urgently needed for treatment optimization.

Methods: The differentially expressed unfolded protein response (UPR)‒related genes between pancreatic tumor and normal tissue were analyzed using the TCGA-PDAC dataset, and these genes that overlapped with UPR‒related prognostic genes from the E-MTAB-6134 dataset were further analyzed.

View Article and Find Full Text PDF

The RNF43_p.G659fs mutation occurs frequently in colorectal cancer, but its function remains poorly understood and there are no specific therapies directed against this alteration. In this study, we find that RNF43_p.

View Article and Find Full Text PDF

Quetiapine is an atypical antipsychotic drug that can be used to treat mental disorders, including schizophrenia, bipolar disorder and Alzheimer's disease. Quetiapine is mainly converted into the active metabolites of norquetiapine and 7-hydroxyquetiapine by the liver enzymes CYP3A4 and CYP2D6. In this study, liquid-liquid extraction (LLE) was used as a sample pretreatment method to eliminate interferences in plasma.

View Article and Find Full Text PDF

While advancements in genome sequencing have identified millions of somatic mutations in cancer, their functional impact is poorly understood. We previously developed the expression-based variant impact phenotyping (eVIP) method to use gene expression data to characterize the function of gene variants. The eVIP method uses a decision tree-based algorithm to predict the functional impact of somatic variants by comparing gene expression signatures induced by introduction of wild-type (WT) versus mutant cDNAs in cell lines.

View Article and Find Full Text PDF

Background: Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer with high proliferative activity. TNBC tumors exhibit elevated MYC expression and altered expression of MYC regulatory genes, which are associated with tumor progression and poor prognosis; however, the underlying mechanisms by which MYC retains its high expression and mediates TNBC tumorigenesis require further exploration.

Methods: ACTL6A regulation of MYC and its target gene, CDK2, was defined using Co-IP, mass spectrometry and ChIP assays.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) remains a major cause of death worldwide. As metastatic disease is primarily responsible for the poor clinical outcome of NSCLC, it is important to understand the process, and its underlying molecular mechanism as well, via which NSCLC cells disseminate. In this study, we identified a new competing endogenous RNA (ceRNA), namely, the MYEOV transcript, and found that it is upregulated in NSCLC and associated with a poor prognosis of the disease.

View Article and Find Full Text PDF

The contribution of autophagy to cancer development remains controversial, largely owing to the fact that autophagy can be tumour suppressive or oncogenic in different biological contexts. Here, we show that in non-small-cell lung cancer (NSCLC), casein kinase 1 alpha 1 (CK1α) suppresses tumour growth by functioning as an autophagy inducer to activate an autophagy-regulating, tumour-suppressive PTEN/AKT/FOXO3a/Atg7 axis. Specifically, CK1α bound the C-terminal tail of PTEN and enhanced both PTEN stability and activity by competitively antagonizing NEDD4-1-induced PTEN polyubiquitination and abrogating PTEN phosphorylation, thereby inhibiting AKT activity and activating FOXO3a-induced transcription of Atg7.

View Article and Find Full Text PDF

MicroRNA-873 (miR‑873) has been reported to be dysregulated in a variety of malignancies, however, the biological function and underlying molecular mechanism of miR‑873 in colorectal cancer (CRC) remain unclear. In the present study we found that the expression levels of miR‑873 were markedly decreased in CRC cell lines and tissues from patients. Statistical analysis revealed that miR‑873 expression was inversely correlated with the disease stage of CRC.

View Article and Find Full Text PDF

Cancer chemoresistance and metastasis are tightly associated features. However, whether they share common molecular mechanisms and thus can be targeted with one common strategy remain unclear in non-small cell lung cancer (NSCLC). Here, we report that high levels of microRNA-128-3p (miR-128-3p) is key to concomitant development of chemoresistance and metastasis in residual NSCLC cells having survived repeated chemotherapy and correlates with chemoresistance, aggressiveness and poor prognosis in NSCLC patients.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are involved in tumorigenesis, tumour recurrence and therapy resistance and Wnt signalling is essential for the development of the biological traits of CSCs. In non-small cell lung carcinoma (NSCLC), unlike in colon cancer, mutations in β-catenin and APC genes are uncommon; thus, the mechanism underlying the constitutive activation of Wnt signalling in NSCLC remains unclear. Here we report that miR-582-3p expression correlates with the overall- and recurrence-free-survival of NSCLC patients, and miR-582-3p has an activating effect on Wnt/β-catenin signalling.

View Article and Find Full Text PDF

Invasion and metastasis are main traits of tumor progression and responsible for the poor prognosis of advanced non-small cell lung cancer (NSCLC). The molecular mechanisms underlying the malignant behaviors of NSCLC remain incompletely understood. The present study demonstrate that up-regulator of cell proliferation (URGCP), a recently identified tumor-promoting gene found in several tumor types, is markedly overexpressed in human NSCLC cell lines and clinical NSCLC samples.

View Article and Find Full Text PDF

The molecular mechanism underlying constitutive activation of AKT signaling, which plays essential roles in astrocytoma progression, is not fully characterized. Increasing numbers of studies have reported that microRNAs are involved in the malignant behavior of astrocytoma cells via directly targeting multiple oncogenes or tumor suppressors. Here, we found that microRNA (miR)-542-3p expression was decreased in glioblastoma cell lines and astrocytoma tissues, and reduced levels of miR-542-3p expression correlated with high histopathological grades and poor prognosis of astrocytoma patients.

View Article and Find Full Text PDF

AKT signaling is constitutively activated in various cancers, due in large part to loss-of-function in the PTEN and PHLPP phosphatases that act as tumor suppressor genes. However, AKT signaling is activated widely in non-small cell lung cancers (NSCLC) where genetic alterations in PTEN or PHLPP genes are rare, suggesting an undefined mechanism(s) for their suppression. In this study, we report upregulation of the oncomir microRNA (miR)-205 in multiple subtypes of NSCLC, which directly represses PTEN and PHLPP2 expression and activates both the AKT/FOXO3a and AKT/mTOR signaling pathways.

View Article and Find Full Text PDF

Background: Metastasis-associated in colon cancer-1 (MACC1) was first identified as a transcriptional activator for proto-oncogene c-MET expression, and its overexpression is frequently associated with metastatic progression for multiply tumor types. In the present study, we analyzed for the first time the expression of MACC1 in breast cancer and its correlation with clinicopathologic features, including metastasis and patient survival.

Results: MACC1 protein expression was analyzed in two cohorts of clinicopathologically characterized breast cancer using immunohistochemistry.

View Article and Find Full Text PDF

Tumor metastasis involves a series of biological steps during which the tumor cells acquire the ability to invade surrounding tissues and survive outside the original tumor site. During the early stages, the cancer cells undergo an epithelial-mesenchymal transition (EMT). Wnt/β-catenin signaling is known to drive EMT and metastasis.

View Article and Find Full Text PDF

Deeper mechanistic understanding of lung adenocarcinoma (non-small cell lung carcinoma, or NSCLC), a leading cause of cancer-related deaths overall, may lead to more effective therapeutic strategies. In analyzing NSCLC clinical specimens and cell lines, we discovered a uniform decrease in miR-186 (MIR186) expression in comparison with normal lung tissue or epithelial cell lines. miR-186 expression correlated with patient survival, with median overall survival time of 63.

View Article and Find Full Text PDF

MicroRNAs have the capacity to coordinately repress multiple target genes and interfere with biological functions of the cell, such as proliferation and apoptosis. Here we report that miR-136 is downregulated in human glioma, and that the miRNA promotes apoptosis of glioma cells induced by chemotherapy. Two anti-apoptotic genes, AEG-1 and Bcl-2, are identified as targets of miR-136, and restoration of AEG-1 or Bcl-2 expression suppresses miR-136-enhanced apoptosis.

View Article and Find Full Text PDF

Constitutive activation of NF-κB is a frequent event in human cancers, playing important roles in cancer development and progression. In nontransformed cells, NF-κB activation is tightly controlled by IκBs. IκBs bind NF-κB in the cytoplasm, preventing it from translocating to the nucleus to modulate gene expression.

View Article and Find Full Text PDF