In the current study differences were evaluated between a complex 3D multistage population model (SINMOD) and a simpler consumer-resource population model for estimating the effects of crude oil on the marine copepod Calanus finmarchicus. The SINTEF OSCAR model was used to simulate hypothetical oil spills in the Lofoten area in 1995, 1997, and 2001. Both population models simulated a negligible effect of crude oil on the Calanus' biomass when assuming low species sensitivity.
View Article and Find Full Text PDFThere is a need to study the time course of toxic chemical effects on organisms because there might be a time lag between the onset of chemical exposure and the corresponding adverse effects. For aquatic organisms, crude oil and oil constituents originating from either natural seeps or human activities can be relevant case studies. In the present study the authors tested a generic toxicokinetic model to quantify the time-varying effects of various oil constituents on the survival of aquatic organisms.
View Article and Find Full Text PDFThe dietary uptake of oil droplets by aquatic organisms has been suggested as a possible exposure pathway for oil-related chemicals. We confronted two bioaccumulation models, one including and one neglecting oil droplet uptake, with measured polycyclic aromatic hydrocarbon (PAH) body burdens of five marine species. The model without oil droplet uptake was able to predict 75% of the observations within one order of magnitude.
View Article and Find Full Text PDFMany studies have focused on natural stress factors that shape the spatial and temporal distribution of calanoid copepods, but bioassays have shown that copepods are also sensitive to a broad range of contaminants. Although both anthropogenic and natural stress factors are obviously at play in natural copepod communities, most studies consider only one or the other. In the present investigation, we modeled the combined impact of both anthropogenic and natural stress factors on copepod populations.
View Article and Find Full Text PDFCrude oil poses a risk to marine ecosystems due to its toxicity and tendency to accumulate in biota. The present study evaluated the applicability of the OMEGA model for estimating oil accumulation in aquatic species by comparing model predictions of kinetic rates (absorption and elimination) and bioconcentration factors (BCF) with measured values. The model was a better predictor than the means of the measurements for absorption and elimination rate constants, but did not outperform the mean measured BCF.
View Article and Find Full Text PDFEnviron Toxicol Chem
April 2013
The present study combines short-term experiments with food chain modeling to explore the long-term effects of the herbicide atrazine on consumer-resource dynamics in a marine intertidal ecosystem. Short-term (28 d) lab experiments indicated that the intrinsic rate of increase (r) and carrying capacity (K) of the marine diatom Seminavis robusta decreased with increasing atrazine exposure. This decrease did not show the concave shape expected from the lifetime productivity for nonexposed diatoms and from single-species toxicity data in the literature but instead was described best by a linear model.
View Article and Find Full Text PDFEnviron Sci Technol
October 2011
Potential contamination of polar regions due to increasing oil exploitation and transportation poses risks to marine species. Risk assessments for polar marine species or ecosystems are mostly based on toxicity data obtained for temperate species. Yet, it is unclear whether toxicity data of temperate organisms are representative for polar species and ecosystems.
View Article and Find Full Text PDF