Background: Cannabis use has increased in Canada since its legalization in 2018, including among pregnant women who may be motivated to use cannabis to reduce symptoms of nausea and vomiting. However, a growing body of research suggests that cannabis use during pregnancy may harm the developing fetus. As a result, patients increasingly seek medical advice from online sources, but these platforms may also spread anecdotal descriptions or misinformation.
View Article and Find Full Text PDFThough algorithms promise many benefits including efficiency, objectivity and accuracy, they may also introduce or amplify biases. Here we study two well-known algorithms, namely PageRank and Who-to-Follow (WTF), and show to what extent their ranks produce inequality and inequity when applied to directed social networks. To this end, we propose a directed network model with preferential attachment and homophily (DPAH) and demonstrate the influence of network structure on the rank distributions of these algorithms.
View Article and Find Full Text PDFUnderstanding edge formation represents a key question in network analysis. Various approaches have been postulated across disciplines ranging from network growth models to statistical (regression) methods. In this work, we extend this existing arsenal of methods with JANUS, a hypothesis-driven Bayesian approach that allows to intuitively compare hypotheses about edge formation in multigraphs.
View Article and Find Full Text PDF