Publications by authors named "Lisete Compagno Michelini"

Drugs such as angiotensin-converting enzyme inhibitors and angiotensin receptor blockers can improve muscle function and exercise capacity, as well as preventing, attenuating or reversing age-related losses in muscle mass, however, the exact mechanisms by which these drugs affect muscle cells, are not yet fully elucidated. Moreover, the potential epigenetic alterations induced in skeletal muscle tissue are also largely unexplored. The aim of this study was to evaluate if enalapril or losartan can change the physical performance and epigenetic profile of skeletal muscle in spontaneously hypertensive rats (SHRs).

View Article and Find Full Text PDF

Aging is accompanied by considerable deterioration of homeostatic systems, such as autonomic imbalance characterized by heightened sympathetic activity, lower parasympathetic tone, and depressed heart rate (HR) variability, which are aggravated by hypertension. Here, we hypothesized that these age-related deficits in aged hypertensive rats can be ameliorated by exercise training, with benefits to the cardiovascular system. Therefore, male 22-mo-old spontaneously hypertensive rats (SHRs) and age-matched Wistar Kyoto (WKY) submitted to moderate-intensity exercise training (T) or kept sedentary (S) for 8 wk were evaluated for hemodynamic/autonomic parameters, baroreflex sensitivity, cardiac sympathetic/parasympathetic tone and analysis of dopamine β-hydroxylase (DBH+) and oxytocin (OT+) pathways of autonomic brain nuclei.

View Article and Find Full Text PDF

Histidine-containing dipeptides (HCDs) are abundantly expressed in striated muscles. Although important properties have been ascribed to HCDs, including H buffering, regulation of Ca transients and protection against oxidative stress, it remains unknown whether they play relevant functions in vivo. To investigate the in vivo roles of HCDs, we developed the first carnosine synthase knockout (CARNS1) rat strain to investigate the impact of an absence of HCDs on skeletal and cardiac muscle function.

View Article and Find Full Text PDF

The metabolic syndrome (MetS) is an obesity-associated disorder of pandemic proportions and limited treatment options. Oxidative stress, low-grade inflammation and altered neural autonomic regulation, are important components and drivers of pathogenesis. Galantamine, an acetylcholinesterase inhibitor and a cholinergic drug that is clinically-approved (for Alzheimer's disease) has been implicated in neural cholinergic regulation of inflammation in several conditions characterized with immune and metabolic derangements.

View Article and Find Full Text PDF

Background: The effects of hypertension and exercise training (T) on the sequential interplay between renin-angiotensin system (RAS), autonomic control and heart remodeling during the development of hypertension in spontaneously hypertensive rats (SHR), was evaluated.

Methods and results: Time course changes of these parameters were recorded in 4-week-old SHR submitted to a T or sedentary (S) protocol. Wistar Kyoto rats served as controls.

View Article and Find Full Text PDF

Nitric oxide (NO), an intercellular signaling molecule is relevant for circulatory autonomic control. Brain NO synthase (NOS) and NO levels were downregulated in pathological conditions, but rescued after exercise training. We hypothesized that exercise training was also able to improve NO modulation within the hypothalamic paraventricular nucleus (PVN) of healthy rats.

View Article and Find Full Text PDF

Background: Exercise training (T) blunts functional deficits and renin-angiotensin system (RAS) hyperactivity in hypertensive individuals. There is no information on T-induced temporal changes of brain RAS. We evaluate now the simultaneous effects of T on functional responses and time course changes in the expression/activity of brain RAS components in autonomic cardiovascular-controlling areas.

View Article and Find Full Text PDF

Exercise training (ExT) is recommended to treat hypertension along with pharmaceutical antihypertensive therapies. Effects of ExT in hypothalamic content of high mobility box 1 (HMGB1) and microglial activation remain unknown. We examined whether ExT would decrease autonomic and cardiovascular abnormalities in spontaneously hypertensive rats (SHR), and whether these effects were associated with decreased HMGB1 content, microglial activation, and inflammation in the hypothalamic paraventricular nucleus (PVN).

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) is associated with impaired vascular function, which contributes to the increased incidence of chronic disease. The aim of this study was to investigate whether aerobic training improves AngII-induced vasoconstriction in IUGR rats. Moreover, we assess the role of superoxide dismutase (SOD) isoforms and NADPH oxidase-derived superoxide anions in this improvement.

View Article and Find Full Text PDF

Knowing that exercise training reduces arterial pressure in hypertensive individuals and that pressure fall is accompanied by blockade of brain renin-angiotensin system, we sought to investigate whether training (T) affects central renin-angiotensin system. Spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto controls (WKY) were submitted to training or kept sedentary (S) for 3 months. After functional recordings, brain was removed and processed for autoradiography (brain stem sequential slices hybridized with (35)S-oligodeoxynucleotide probes for angiotensinogen [Aogen] and angiotensin II type 1 [AT(1A)] receptors).

View Article and Find Full Text PDF

Due to upward resetting of baroreceptors, tachycardia coexists with increased pressure during dynamic exercise. This review critically evaluates current knowledge of proposed mechanisms to explain the continuous resetting of baroreflex control of heart rate and sympathetic nerve activity during and after exercise and exercise training. Of interest is the exercise-induced upward resetting that occurs in hypertensive and normotensive individuals.

View Article and Find Full Text PDF

1. The role of vasopressinergic and oxytocinergic (VPergic and OTergic, respectively) projections to the brain stem in the modulation of heart rate control is discussed on the basis of both changes in the peptide content of the dorsal brain stem (DBS) and functional effects following reflex- and exercise-induced activation in the presence and/or absence of receptor blockade within the nucleus tractus solitarius (NTS) and/or peripheral autonomic block. 2.

View Article and Find Full Text PDF

We showed that the training-induced, pressure-lowering effect correlates with decreased arteriole wall/lumen ratio and venule growth in the gracilis muscle. To investigate whether these beneficial changes are tissue-specific or occur in other muscles and tissues, we analyzed the effects of hypertension and training on microcirculatory profile of locomotor/nonlocomotor muscles and another nonmuscular tissue. Spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats were submitted to low-intensity training (50% to 60% maximal exercise capacity, 13 weeks); age-matched control rats were kept sedentary.

View Article and Find Full Text PDF