Publications by authors named "Lisen Xu"

To find optimal conditions for performing laser induced refractive index change (LIRIC) in living eyes with both safety and efficacy, we investigated multiphoton excitation scaling of this procedure in hydrogel and excised corneal tissue. Three distinct wavelength modalities were examined: high-repetition-rate (HRR) and low-repetition-rate (LRR) 405 nm systems, as well as 800 nm and 1035 nm systems, whose LIRIC-inducing properties are described for the first time. Of all the systems, LRR 405 nm-LIRIC was able to produce the highest phase shifts at the lowest average laser powers.

View Article and Find Full Text PDF

Heat stress hurts rice, and floral organs are mostly sensitive to heat stress. We aimed to unravel molecular responses to heat stress in rice floral organs using Illumina/Solexa sequencing technology for addressing the increasing concern of globle warming. At meiophase of the pollen mother cell (pulvinus flat), the plants were stressed for 3 d at 38 C, and RNA was extracted from the stressed pistil and stamen for RNA-Seq sequencing to build the heat stress transcriptom library.

View Article and Find Full Text PDF

Purpose: To determine the efficacy of intratissue refractive index shaping (IRIS) using 400-nm femtosecond laser pulses (blue light) for writing refractive structures directly into live cat corneas in vivo, and to assess the longevity of these structures in the eyes of living cats.

Methods: Four eyes from two adult cats underwent Blue-IRIS. Light at 400 nm with 100-femtosecond (fs) pulses were tightly focused into the corneal stroma of each eye at an 80-MHz repetition rate.

View Article and Find Full Text PDF

Purpose: To test the feasibility of intratissue refractive index shaping (IRIS) in living corneas by using 400-nm femtosecond (fs) laser pulses (blue-IRIS). To test the hypothesis that the intrinsic two-photon absorption of the cornea allows blue-IRIS to be performed with greater efficacy than when using 800-nm femtosecond laser pulses.

Methods: Fresh cat corneas were obtained postmortem and cut into six wedges.

View Article and Find Full Text PDF

Purpose: To perform high-resolution, noninvasive, calibrated measurements of the concentrations and diffusion profiles of fluorescent molecules in the live cornea after topical application to the ocular surface.

Methods: An 800-nm femtosecond laser was used to perform two-photon fluorescence (TPF) axial scanning measurements. Calibration solutions consisting of sodium fluorescein (Na-Fl; concentration range, 0.

View Article and Find Full Text PDF

Purpose: To assess the effectiveness of intratissue refractive index shaping (IRIS) in living corneas and test the hypothesis that it can be enhanced by increasing the two-photon absorption (TPA) of the tissue.

Methods: Three corneas were removed from adult cats and cut into six pieces, which were placed in preservative (Optisol-GS; Bausch & Lomb, Inc., Irvine, CA) containing 0%, 0.

View Article and Find Full Text PDF