Background: T-cell retargeting to eliminate CEACAM5-expressing cancer cells via CEACAM5xCD3 bispecific antibodies (BsAbs) showed limited clinical activity so far, mostly due to insufficient T-cell activation, dose-limiting toxicities, and formation of anti-drug antibodies (ADA).
Methods: We present here the generation and preclinical development of NILK-2301, a BsAb composed of a common heavy chain and two different light chains, one kappa and one lambda, determining specificity (so-called κλ body format).
Results: NILK-2301 binds CD3ɛ on T-cells with its lambda light chain arm with an affinity of ≈100 nM, and the CEACAM5 A2 domain on tumor cells by its kappa light chain arm with an affinity of ≈5 nM.
The aberrant release of inflammatory mediators often referred to as a cytokine storm or cytokine release syndrome (CRS), is a common and sometimes fatal complication in acute infectious diseases including Ebola, dengue, COVID-19, and influenza. Fatal CRS occurrences have also plagued the development of highly promising cancer therapies based on T-cell engagers and chimeric antigen receptor (CAR) T cells. CRS is intimately linked with dysregulated and excessive cytokine release, including IFN-γ, TNF-α, IL 1, IL-6, and IL-10, resulting in a systemic inflammatory response leading to multiple organ failure.
View Article and Find Full Text PDF