Skin grafting is often the only treatment for skin trauma when large areas of tissue are affected. This surgical intervention damages the deeper dermal layers of the skin with implications for wound healing and a risk of scar development. Photobiomodulation (PBM) therapy modulates biological processes in different tissues, with a positive effect on many cell types and pathways essential for wound healing.
View Article and Find Full Text PDFIntroduction: The use of photobiomodulation has been proposed to improve wound healing for the last two decades. Recent development in photobiomodulation has led to the development of a novel biophotonic platform that utilizes fluorescent light energy (FLE) within the visible spectrum of light for healing of skin inflammation and wounds.
Materials And Methods: In this article, FLE was used in preliminary analysis on 18 case studies of acute second-degree burns and in a pilot study using an ex vivo human skin model.
Fluorescent light energy (FLE) has been used to treat various injured tissues in a non-pharmacological and non-thermal fashion. It was applied to stimulate cell proliferation, accelerate healing in chronic and acute wounds, and reduce pain and inflammation. FLE has been shown to reduce pro-inflammatory cytokines while promoting an environment conducive to healing.
View Article and Find Full Text PDF