Personalized treatment informed by computational models has the potential to markedly improve the outcome for patients with a type B aortic dissection. However, existing computational models of dissected walls significantly simplify the characteristic false lumen, tears and/or material behavior. Moreover, the patient-specific wall thickness and stiffness cannot be accurately captured non-invasively in clinical practice, which inevitably leads to assumptions in these wall models.
View Article and Find Full Text PDFBiomech Model Mechanobiol
April 2024
While transitioning from the acute to chronic phase, the wall of a dissected aorta often expands in diameter and adaptations in thickness and microstructure take place in the dissected membrane. Including the mechanisms, leading to these changes, in a computational model is expected to improve the accuracy of predictions of the long-term complications and optimal treatment timing of dissection patients. An idealized dissected wall was modeled to represent the elastin and collagen production and/or degradation imposed by stress- and inflammation-mediated growth and remodeling, using the homogenized constrained mixture theory.
View Article and Find Full Text PDFDetermining proper material parameters from clinical data remains a large, though unavoidable, challenge in patient-specific computational cardiovascular modeling. In an attempt to couple the clinical and modelling practice, this study investigated whether pulse wave velocity (PWV), a clinical arterial stiffness measure, can guide in determining appropriate parameter values for the Gasser-Ogden-Holzapfel (GOH) constitutive model. The reduction and uncertainty analysis was demonstrated on a cylindrical descending thoracic aorta model.
View Article and Find Full Text PDF