Acute myeloid leukemia (AML) is a heterogeneous hematological cancer characterized by poor prognosis and frequent relapses. Aside from specific mutation-related changes, in AML, the overall function of lysosomes and mitochondria is drastically altered to fulfill the elevated biomass and bioenergetic demands. On the basis of previous results, in silico drug discovery screening was used to identify a new family of lysosome-/mitochondria-targeting compounds.
View Article and Find Full Text PDFDespite the outstanding advances in understanding the biology underlying the pathophysiology of acute myeloid leukemia (AML) and the promising preclinical data published lastly, AML treatment still relies on a classic chemotherapy regimen largely unchanged for the past five decades. Recently, new drugs have been approved for AML, but the real clinical benefit is still under evaluation. Nevertheless, primary refractory and relapse AML continue to represent the main clinical challenge, as the majority of AML patients will succumb to the disease despite achieving a complete remission during the induction phase.
View Article and Find Full Text PDFProgression and recurrence of breast cancer, as well as reduced survival of patients with breast cancer, are associated with chronic stress, a condition known to impact the hypothalamic-pituitary axis and the autonomic nervous system. Preclinical and clinical evidence support the involvement of the sympathetic nervous system in the control of bone remodeling and in pathologies of the skeleton, including bone metastasis. In experimental mouse models of skeletal metastasis, administration of the βAR agonist isoproterenol (ISO), used as a surrogate of norepinephrine, the main neurotransmitter of sympathetic neurons, was shown to favor bone colonization of metastatic breast cancer cells via an increase bone marrow vascularity.
View Article and Find Full Text PDFThe skeleton is a common site for breast cancer metastasis. Although significant progress has been made to manage osteolytic bone lesions, the mechanisms driving the early steps of the bone metastatic process are still not sufficiently understood to design efficacious strategies needed to inhibit this process and offer preventative therapeutic options. Progression and recurrence of breast cancer, as well as reduced survival of patients with breast cancer, are associated with chronic stress, a condition known to stimulate sympathetic nerve outflow.
View Article and Find Full Text PDFSkeletal lesions contribute substantially to morbidity and mortality in patients with cancer. Emerging treatments for metastatic bone disease have arisen from our understanding of the biology of bone metastases. Tumour cells alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction.
View Article and Find Full Text PDF