Background: Osteoporosis is a systemic skeletal disease characterised by reduced bone mineral density and increased susceptibility to fracture; these traits are highly heritable. Both common and rare copy number variants (CNVs) potentially affect the function of genes and may influence disease risk.
Aim: To identify CNVs associated with osteoporotic bone fracture risk.
Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and performed expression quantitative trait loci (eQTL) analysis and bioinformatics network analysis. We conducted an autosomal genome-wide meta-analysis of gene-by-sex interaction on lumbar spine (LS) and femoral neck (FN) BMD in 25,353 individuals from 8 cohorts.
View Article and Find Full Text PDFIncreasing age is associated with reduced bone mineral content and increased risk of fractures. This is caused by a relative insufficiency of osteoblasts compared with osteoclasts. We therefore wanted to examine the potential differences in proliferation, differentiation, and expression of cytokines between human osteoblasts (hOBs) obtained from young and elderly individuals.
View Article and Find Full Text PDFContext: Mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) gene cause rare syndromes characterized by altered bone mineral density (BMD). More common LRP5 variants may affect osteoporosis risk in the general population.
Objective: To generate large-scale evidence on whether 2 common variants of LRP5 (Val667Met, Ala1330Val) and 1 variant of LRP6 (Ile1062Val) are associated with BMD and fracture risk.
Introduction: The TGFB1 gene which encodes transforming growth factor beta 1, is a strong candidate for susceptibility to osteoporosis and several studies have reported associations between bone mineral density (BMD), osteoporotic fractures and polymorphisms of TGFB1, although these studies have yielded conflicting results.
Methods: We investigated associations between TGFB1 polymorphisms and BMD and fracture in the GENOMOS study: a prospective multicenter study involving 10 European research studies including a total of 28,924 participants. Genotyping was conducted for known TGFB1 polymorphisms at the following sites: G-1639-A (G-800-A, rs1800468), C-1348-T (C-509-T, rs1800469), T29-C (Leu10Pro, rs1982073), G74-C (Arg25Pro, rs1800471) and C788-T (Thr263Ile, rs1800472).
Background: Polymorphisms of the vitamin D receptor (VDR) gene have been implicated in the genetic regulation of bone mineral density (BMD). However, the clinical impact of these variants remains unclear.
Objective: To evaluate the relation between VDR polymorphisms, BMD, and fractures.
Background: Osteoporosis and fracture risk are considered to be under genetic control. Extensive work is being performed to identify the exact genetic variants that determine this risk. Previous work has suggested that a G/T polymorphism affecting an Sp1 binding site in the COLIA1 gene is a genetic marker for low bone mineral density (BMD) and osteoporotic fracture, but there have been no very-large-scale studies of COLIA1 alleles in relation to these phenotypes.
View Article and Find Full Text PDF