Publications by authors named "Lise B Ahlborn"

Background: Gastric and gastroesophageal junction (GEJ) cancer represents a significant global health challenge, with high recurrence rates and poor survival outcomes. This study investigates circulating tumor DNA (ctDNA) as a biomarker for assessing recurrence risk in patients with resectable gastric and GEJ adenocarcinomas (AC).

Methods: Patients with resectable gastric and GEJ AC, undergoing perioperative chemotherapy and surgery, were prospectively enrolled.

View Article and Find Full Text PDF

Introduction: The aim of this study was to investigate the genomic changes that occur in the development from dysplasia, cancer and to regional metastases in patients with oral cavity squamous cell carcinoma (OSCC).

Material And Methods: We included OSCC patients with lymph node metastases at diagnosis, treated with primary surgery at Rigshospitalet, University of Copenhagen in the period 2007-2014. The resected tumor specimens were evaluated by a pathologist, who marked areas of morphologically normal tissue and dysplasia surrounding the cancer, two areas from the cancer tissue, and one area within the lymph node metastases.

View Article and Find Full Text PDF

Background: Detection of circulating tumor-derived material (cTM) in the peripheral blood (PB) of cancer patients has been shown to be useful in early diagnosis, prediction of prognosis, and disease monitoring. However, it has not yet been thoroughly evaluated for pediatric sarcoma patients.

Methods: We searched the PubMed and EMBASE databases for studies reporting the detection of circulating tumor cells, circulating tumor DNA, and circulating RNA in PB of pediatric sarcoma patients.

View Article and Find Full Text PDF

Purpose: The clinical potential of liquid biopsy in patients with advanced cancer is real-time monitoring for early detection of treatment failure. Our study aimed to investigate the clinical validity of circulating tumor DNA (ctDNA) treatment monitoring in a real-life cohort of patients with advanced non-small cell lung cancer (NSCLC).

Experimental Design: Patients with advanced or noncurative locally advanced NSCLC were prospectively included in an exploratory study (NCT03512847).

View Article and Find Full Text PDF

Background: An increasing number of trials indicate that treatment outcomes in cancer patients with metastatic disease are improved when targeted treatments are matched with druggable genomic alterations in individual patients (pts). An estimated 30-80% of advanced solid tumors harbor actionable genomic alterations. However, the efficacy of personalized cancer treatment is still scarcely investigated in larger, controlled trials due to the low frequency and heterogenous distribution of druggable alterations among different histologic tumor types.

View Article and Find Full Text PDF

Ependymoma is the second most common malignant brain tumor in children. The etiology is largely unknown and germline DNA sequencing studies focusing on childhood ependymoma are limited. We therefore performed germline whole-genome sequencing on a population-based cohort of children diagnosed with ependymoma in Denmark over the past 20 years (n = 43).

View Article and Find Full Text PDF

: Genomic profiling in advanced Non-Small Cell Lung cancer (NSCLC) can reveal Actionable Molecular Alterations (AMAs). Our study aims to investigate clinical relevance of re-biopsy after first line treatment, by reporting on acquired and persistent AMAs and potential targeted treatments in a real-time cohort of NSCLC patients. : Patients with advanced NSCLC receiving first-line treatment were prospectively included in an observational study (NCT03512847).

View Article and Find Full Text PDF

Purpose: Estrogen receptor positive (ER+) breast cancer constitutes almost 85% of all breast cancer patients and are a genetically highly heterogenic group. Data on the association of somatic alterations to outcome and prognosis are however sparse. In this neoadjuvant endocrine phase II trial including postmenopausal breast cancer patients with ER+, HER2 normal breast cancer, we investigated the rate of pathogenic mutations before and after treatment as well as the association with treatment response and survival.

View Article and Find Full Text PDF

Background: The overall aim was to investigate the change over time in circulating cell free DNA (cfDNA) in patients with locally advanced non-small cell lung cancer (NSCLC) undergoing concurrent chemo-radiotherapy. Furthermore, to assess the possibility of detecting circulating cell free tumor DNA (ctDNA) using shallow whole genome sequencing (sWGS) and size selection.

Methods: Ten patients were included in a two-phase study.

View Article and Find Full Text PDF

Glioblastoma (GB) is an incurable brain cancer with limited treatment options. The aim was to test the feasibility of using cell-free DNA (cfDNA) to support evaluation of treatment response, pseudo-progression and whether progression could be found before clinical and/or radiologic progression. CfDNA fluctuated during treatment with the highest levels before diagnostic surgery and at progression.

View Article and Find Full Text PDF

Purpose: Access to genomic tumor material is required to select patients for targeted therapies. However, tissue biopsies are not always feasible and therefore circulating cell-free DNA (cfDNA) has emerged as an alternative. Here we investigate the utility of cfDNA for genomic tumor profiling in the phase I setting.

View Article and Find Full Text PDF

Existing methods to improve detection of circulating tumor DNA (ctDNA) have focused on genomic alterations but have rarely considered the biological properties of plasma cell-free DNA (cfDNA). We hypothesized that differences in fragment lengths of circulating DNA could be exploited to enhance sensitivity for detecting the presence of ctDNA and for noninvasive genomic analysis of cancer. We surveyed ctDNA fragment sizes in 344 plasma samples from 200 patients with cancer using low-pass whole-genome sequencing (0.

View Article and Find Full Text PDF

Purpose: We evaluated the clinical benefit of tumor molecular profiling to select treatment in the phase I setting.

Experimental Design: Patients with advanced solid cancers and exhausted treatment options referred to a phase I unit were included in a prospective, single-center, single-arm open-label study (NCT02290522). Tumor biopsies were obtained for comprehensive genomic analysis including whole-exome sequencing and RNA sequencing.

View Article and Find Full Text PDF

Purpose: We evaluated longitudinal tracking of BRAF V600E in circulating cell-free DNA (cfDNA) as a marker of treatment response to BRAF inhibitor (BRAFi) combination therapies in non-melanoma solid tumors included in the Copenhagen Prospective Personalized Oncology (CoPPO) program.

Experimental Design: Patients with BRAF V600E-mutated tumors were treated with combination therapies including BRAFi. Quantification of mutant cfDNA from plasma was determined and correlated to clinical outcomes.

View Article and Find Full Text PDF

Background: Small fragments of tumor DNA can be found in the circulation of cancer patients, providing a noninvasive access to tumor material (liquid biopsy). Analysis of circulating tumor DNA (ctDNA) has been used for diagnosis, treatment decisions, and detection of therapy resistance, including in patients with tumors inaccessible for biopsy, making ctDNA an important alternative source of tumor material. Immediate separation of plasma is widely used in standard isolation of cell-free DNA to ensure high quality plasma DNA.

View Article and Find Full Text PDF

Genetic testing of BRCA1/2 includes screening for single nucleotide variants and small insertions/deletions and for larger copy number variations (CNVs), primarily by Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). With the advent of next-generation sequencing (NGS), it has become feasible to provide CNV information and sequence data using a single platform. We report the use of NGS gene panel sequencing on the Illumina MiSeq platform and JSI SeqPilot SeqNext software to call germline CNVs in BRCA1 and BRCA2.

View Article and Find Full Text PDF

Background: Somatic copy number alterations (SCNAs) occurring in tumors can provide information about tumor classification, patient's outcome or treatment targets. Liquid biopsies, incl. plasma samples containing circulating cell-free tumor DNA (ccfDNA) can be used to assess SCNAs for clinical purposes, however specify and reliability of methods have to be tested.

View Article and Find Full Text PDF

Background: Human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OPSCC) often presents with cystic cervical metastasis and a small primary tumor localized in the palatine tonsils or base of the tongue, which is diagnostically challenging. Testing for HPV DNA in fine-needle aspiration (FNA) smears from metastases may facilitate a targeted diagnostic workup for identifying the primary tumor. This study was designed to assess the ability to detect HPV DNA in FNA smears with polymerase chain reaction (PCR).

View Article and Find Full Text PDF

Germ-line mutations in the RAD51C gene have recently been identified in families with breast and ovarian cancer and have been associated with an increased risk of ovarian cancer. In this study, we describe the frequency of pathogenic RAD51C mutations identified in Danish breast and/or ovarian cancer families. We screened the RAD51C gene in 1228 Danish hereditary breast and/or ovarian cancer families by next-generation sequencing analysis.

View Article and Find Full Text PDF

Pathogenic germline mutations in the BRCA1 gene predispose carriers to early onset breast and ovarian cancer. Clinical genetic screening of BRCA1 often reveals variants with uncertain clinical significance, complicating patient and family management. Therefore, functional examinations are urgently needed to classify whether these uncertain variants are pathogenic or benign.

View Article and Find Full Text PDF

Next-generation sequencing has entered routine genetic testing of hereditary breast cancer. It has provided the opportunity to screen multiple genes simultaneously, and consequently has identified new complex genotypes. Here we report the first identification of a woman double heterozygote for mutations in the RAD51C and BRCA2 genes.

View Article and Find Full Text PDF