It is striking that all marketed SARS-CoV-2 vaccines are developed for intramuscular administration designed to produce humoral and cell mediated immune responses, preventing viremia and the COVID-19 syndrome. They have a high degree of efficacy in humans (70-95%) depending on the type of vaccine. However, little protection is provided against viral replication and shedding in the upper airways due to the lack of a local sIgA immune response, indicating a risk of transmission of virus from vaccinated individuals.
View Article and Find Full Text PDFDrug delivery systems that safely and consistently improve transport of poorly absorbed compounds across epithelial barriers are highly sought within the drug delivery field. The use of chemical permeation enhancers is one of the simplest and widely tested approaches to improve transmucosal permeability via oral, nasal, buccal, ocular and pulmonary routes. To date, only a small number of permeation enhancers have progressed to clinical trials, and only one product that includes a permeation enhancer has reached the pharmaceutical market.
View Article and Find Full Text PDFNasal delivery of large peptides such as parathyroid 1-34 (PTH 1-34) can benefit from a permeation enhancer to promote absorption across the nasal mucosa into the bloodstream. Previously, we have published an encouraging bioavailability (78%), relative to subcutaneous injection in a small animal preclinical model, for a liquid nasal spray formulation containing the permeation enhancer polyethylene glycol (15)-hydroxystearate (Solutol HS15). We report here the plasma pharmacokinetics of PTH 1-34 in healthy human volunteers receiving the liquid nasal spray formulation containing Solutol HS15.
View Article and Find Full Text PDFThe application of permeation enhancers (PEs) to improve transport of poorly absorbed active pharmaceutical ingredients across the intestinal epithelium is a widely tested approach. Several hundred compounds have been shown to alter the epithelial barrier, and although the research emphasis has broadened to encompass a role for nanoparticle approaches, PEs represent a key constituent of conventional oral formulations that have progressed to clinical testing. In this review, we highlight promising PEs in early development, summarize the current state of the art, and highlight challenges to the translation of PE-based delivery systems into safe and effective oral dosage forms for patients.
View Article and Find Full Text PDFThe use of nanocarrier delivery systems for direct nose to brain drug delivery shows promise for achieving increased brain drug levels as compared to simple solution systems. An example of such nanocarriers is emulsomes formed from lipid cores surrounded and stabilised by a corona of phospholipids (PC) and a coating of Tween 80, which combines the properties of both liposomes and emulsions. Oxcarbazepine (OX), an antiepileptic drug, was entrapped in emulsomes and then localized in a poly(lactic acid--glycolic acid)-poly(ethylene glycol)-poly(lactic acid--glycolic acid) (PLGA-PEG-PLGA) triblock copolymer thermogel.
View Article and Find Full Text PDFOsteoporosis treatment with PTH 1-34 injections significantly reduces the incidence of bone fracture. Potential further reductions in fracture rate should be observed through nasal spray delivery to address the poor compliance associated with patient dislike of repeated PTH 1-34 subcutaneous injections. In vitro human osteoblast-like Saos-2 cell intracellular cAMP levels were used to define PTH 1-34 nasal spray formulation bioactivity.
View Article and Find Full Text PDFObjective: The aim of this study was to determine the antimicrobial activity of different chitosans (CS) against typical colonizing pathogens of the urinary tract and to assess their efficacy against bacterial adhesion and the subsequent biofilm formation on urinary catheters.
Methods: The antimicrobial activity of high and low molecular weight CS (50 and 150 kDa) at pH 5.0 and 6.
Purpose: Biodegradable polymeric nanoparticles of different architectures based on polyethylene glycol-co-poly(ε-caprolactone) block copolymers have been loaded with noscapine (NOS) to study their effect on its anticancer activity. It was intended to use solubility of NOS in an acidic environment and ability of the nanoparticles to passively target drugs into cancer tissue to modify the NOS pharmacokinetic properties and reduce the requirement for frequent injections.
Methods: Linear and star-shaped copolymers were synthetized and used to formulate NOS loaded nanoparticles.
Context: The development of an improved, efficacious human GH (hGH) product administered by a noninjectable route of delivery such as the nasal route is highly desirable. We have developed a novel nasal hGH product (CP024) that showed excellent nasal absorption in animal models; however, the translation of these results into the clinical setting is essential because past attempts to develop such formulations by other groups have been unable to induce IGF-1 in man.
Objective: The objective of the study was to assess the pharmacokinetics, pharmacodynamics, and tolerability of CP024 compared with a sc hGH injection.
The ability to deliver therapeutically relevant amounts of drugs directly from the nasal cavity to the central nervous system to treat neurological diseases is dependent on the availability of efficient drug delivery systems. Increased delivery and/or therapeutic effect has been shown for drugs encapsulated in nanoparticles; however, the factors governing the transport of the drugs and/or the nanoparticles from the nasal cavity to the brain are not clear. The present study evaluates the potential transport of nanoparticles across the olfactory epithelium in relation to nanoparticle characteristics.
View Article and Find Full Text PDFThe purpose of this study was to develop and evaluate a delivery system comprising a thermosensitive gel for the sustained release of steroidal hormones in fish, over an extended period of time after a single intramuscular (i.m.) injection and for the improved reproductive performance in fish.
View Article and Find Full Text PDFPurpose: CriticalSorb™, with the principal component Solutol® HS15, is a novel mucosal drug delivery system demonstrated to improve the bioavailability of selected biotherapeutics. The intention of this study is to elucidate mechanism(s) responsible for the enhancement of trans-mucosal absorption of biological drugs by Solutol® HS15.
Methods: Micelle size and CMC of Solutol® HS15 were determined in biologically relevant media.
There is an obvious need for efficient and safe nasal absorption enhancers for the development of therapeutically efficacious nasal products for small hydrophilic drugs, peptides, proteins, nucleic acids and polysaccharides, which do not easily cross mucosal membranes, including the nasal. Recent years have seen the development of a range of nasal absorption enhancer systems such as CriticalSorb (based on Solutol HS15) (Critical Pharmaceuticals Ltd), Chisys based on chitosan (Archimedes Pharma Ltd) and Intravail based on alkylsaccharides (Aegis Therapeutics Inc.), that is presently being tested in clinical trials for a range of drugs.
View Article and Find Full Text PDFDrug Deliv Transl Res
February 2013
Systemic delivery of proteins via the nasal route has to date been limited by their poor absorption across the nasal mucosa, and the less than optimal tolerability of known permeation enhancers. We have recently developed a highly effective nasal delivery system (CriticalSorb™) based on Solutol HS15. Extensive toxicology studies have shown CriticalSorb™ to be very well tolerated, non-toxic and non-irritant.
View Article and Find Full Text PDFThe production of microparticles using a supercritical carbon dioxide based PGSS technique (CriticalMix™) has been exploited to develop blended systems targeted at pulmonary delivery. Hence, PEG based polymers of different molecular weights (1000-6000 Da) were blended in situ with fatty acids (stearic, palmitic or myristic acid) or with commercially available PEG-stearates. The effect of the different thermodynamic properties of the polymers was evaluated by characterising the microparticles produced in terms of their melting temperature by conventional DSC and in the presence of high pressure CO(2) using a high pressure variable volume view cell.
View Article and Find Full Text PDFThe thermodynamic behaviour of selected polymeric components for preparation of controlled release microparticles using supercritical carbon dioxide (scCO(2)) processing was investigated. The polymeric materials selected were egg lecithin (a model for the lung surfactant phospholipid), poly(ethyleneglycol) (PEG) of different molecular weights, fatty acids (C18, C16, and C14), and physical blends of PEGs and fatty acids. In addition a range of PEG-stearates was also assessed.
View Article and Find Full Text PDFThe presence of reactive primary amines in the backbone structure of chitosan, enables the derivatisation with different functional groups and thereby improving and expanding its properties, such as solubility and mucoadhesiveness, for biomedical applications. Such derivatives can be exploited with good results in a number of biomedical areas, including enhancement of nucleic acid transfection in gene therapy, as well as many other applications aiming to maximize drug delivery and aiding tissue engineering. The aim of this review is to provide an up to date overview of the methods used for derivatizing the chitosan with amino acids and to discuss the characteristics and potential biomedical application of the different amino acid derivatized chitosans described in the literature.
View Article and Find Full Text PDFThe absorption enhancing efficiency of CriticalSorb for human growth hormone (MW 22 kDa) was investigated in the conscious rat model. The principle absorption enhancing component of CriticalSorb, Solutol HS15, comprises polyglycol mono- and di-esters of 12-hydroxystearic acid combined with free polyethylene glycol. When administering hGH nasally in rats with increasing concentrations of Solutol HS15, it was found that for a 10%w/v solution formulation a bioavailability of 49% was obtained in the first 2h after administration.
View Article and Find Full Text PDFThis work explored the interaction of chitosan with Calu-3 and Caco-2 cell lines, as models of the airway and intestinal epithelium, respectively. The toxicity, tight junction opening and mucoadhesive effects of chitosan were compared in the two cell lines. Additionally, the role of mucus in the absorption-promoting activity of chitosan was studied systematically.
View Article and Find Full Text PDFThe present review sets out to discuss recent developments and prospects of absorption promoters and absorption modulator systems being developed commercially by companies specialising in nasal drug delivery of normal small molecular weight drugs and biological drugs such as peptide and proteins. The absorption promoter systems selected for discussion in this review are those with the most promising preclinical and/or clinical data and sufficient toxicology data and/or company development efforts to warrant use in marketed products i.e.
View Article and Find Full Text PDFThe instability of human growth hormone (hGH) to temperature and interfaces makes its formulation into injectable, sustained-release drug delivery systems challenging. A novel method of encapsulating hGH in polymeric microparticles has been developed using supercritical CO(2) (scCO(2)) technology, but there is limited understanding of the stability of hGH within this system. The aim of this study was to evaluate the stability of hGH in scCO(2) processing.
View Article and Find Full Text PDFPurpose: Novel biodegradable and mucoadhesive PLGA/chitosan microparticles with the potential for use as a controlled release gastroretentive system were manufactured using supercritical CO(2) (scCO(2)) by the Particle Gas Saturated System (PGSS) technique (also called CriticalMix(TM)).
Methods: Microparticles were produced from PLGA with the addition of mPEG and chitosan in the absence of organic solvents, surfactants and crosslinkers using the PGSS technique. Microparticle formulations were morphologically characterized by scanning electron microscope; particle size distribution was measured using laser diffraction.