Publications by authors named "Lisbeth G Thygesen"

Cellulose micro/nanofibril (MNFC) films are an interesting alternative to plastic-based films for application in biodegradable packaging. In this study, we aimed to produce and characterize MNFC films obtained from alkaline-pretreated rubberwood (Hevea brasiliensis) waste and Eucalyptus sp. commercial pulp.

View Article and Find Full Text PDF

Micro- and nanoplastic (MNP) pollution in aquatic ecosystems requires investigation on its source, transport, and extent to assess and mitigate its risks. Chitosan is a potential biomolecule for water treatment, but its interaction with MNP is undefined. In this work, chitosan-nanoplastic interaction was explored in the laboratory under environmentally relevant conditions using polystyrene (PS) nanoplastic (NP) as model particle to identify conditions at which PS-chitosan interaction resulted in aggregation.

View Article and Find Full Text PDF

In this study, cyanobacterial biochars (CBs) enriched/doped with non-metallic elements were prepared by pyrolysis of biomass amended with different N, S, and P containing compounds. Their catalytic reactivity was tested for persulfate oxidation of the antibiotic norfloxacin (NOR). N and S doping failed to improve CB catalytic reactivity, while P doping increased reactivity 5 times compared with un-doped biochar.

View Article and Find Full Text PDF

Vinyl chloride (VC) is a dominant carcinogenic residual in many aged chlorinated solvent plumes, and it remains a huge challenge to clean it up. Zerovalent iron (ZVI) is an effective reductant for many chlorinated compounds but shows low VC removal efficiency at field scale. Amendment of ZVI with a carbonaceous material may be used to both preconcentrate VC and facilitate redox reactions.

View Article and Find Full Text PDF

Water is a key element for wood performance, as water molecules interact with the wood structure and affect important material characteristics such as mechanical properties and durability. Understanding wood-water interactions is consequently essential for all applications of wood, including the design of wood materials with improved durability by chemical modification. In this work, we used Raman micro-spectroscopy in combination with a specially designed moisture chamber to map molecular groups in wood cell walls under controlled moisture conditions in the hygroscopic range.

View Article and Find Full Text PDF

Foliar fertilization delivers essential nutrients directly to plant tissues, reducing excessive soil fertilizer applications that can lead to eutrophication following nutrient leaching. Foliar nutrient absorption is a dynamic process affected by leaf surface structure and composition, plant nutrient status, and ion physicochemical properties. We applied multiple methods to study the foliar absorption behaviors of manganese (Mn) and phosphorus (P) in nutrient-deficient spring barley (Hordeum vulgare) at two growth stages.

View Article and Find Full Text PDF

Moisture performance is an important factor determining the resistance of wood-based building materials against fungal decay. Understanding how material porosity and chemistry affect moisture performance is necessary for their efficient use, as well as for product optimisation. In this study, three complementary techniques (X-ray computed tomography, infrared and low-field NMR spectroscopy) are applied to elucidate the influence of additives, manufacturing process and material structure on the liquid water absorption and desorption behaviour of a selection of wood-based panels, thermally modified wood and wood fibre insulation materials.

View Article and Find Full Text PDF

This study investigated the production of xylo-oligosaccharides (XOS) from sugarcane straw (SCS) using steam explosion (SE) pretreatment at pilot-scale, as well as co-production of fermentable sugars and lignin-rich residues for bioethanol and bioenergy, respectively. SE conditions 200 °C; 15 bar; 10 min led to 1) soluble XOS yields of up to 35 % (w/w) of initial xylan with ∼50 % of the recovered XOS corresponding to xylobiose and xylotriose, considered the most valuable sugars for prebiotic applications; 2) fermentable glucose yields from the enzymatic hydrolysis of SE-pretreated SCS of up to ∼78 %; 3) increase in the energy content of saccharified SCS residues (16 %) compared to the untreated material. From an integrated biorefinery perspective, it demonstrated the potential use of SCS for the production of value-added XOS ingredients as well as liquid and solid biofuel products.

View Article and Find Full Text PDF

Some common ash trees () show tolerance towards shoot dieback caused by the invasive ascomycete . Leaf petioles are considered to serve as a pathogen colonization route to the shoots. We compared four common ash clones with variation in disease tolerance, and included the native host, Manchurian ash (), as a reference.

View Article and Find Full Text PDF

To decarbonize the building sector, the use of durable wood materials must be increased. Inspiration for environmentally benign wood protection systems is sought in durable tree species depositing phenolic extractives in their heartwood. Based on the hypothesis that the micro-distribution of extractives influences durability, we compared the natural impregnation patterns of non-durable, but readily available Norway spruce to more durable Kurile larch by mapping the distribution of heartwood extractives with Confocal Raman Imaging and multivariate data decomposition.

View Article and Find Full Text PDF

Understanding of how the plant cell walls of different plant species respond to pretreatment can help improve saccharification in bioconversion processes. Here, we studied the chemical and structural modifications in lignin and hemicellulose in hydrothermally pretreated poplar and wheat straw using wet chemistry and 2D heteronuclear single quantum coherence nuclear magnetic resonance (NMR) and their effects on cellulose conversion. Increased pretreatment severity reduced the levels of β─O─4 linkages with concomitant relatively increased levels of β─5 and β─β structures in the NMR spectra.

View Article and Find Full Text PDF

Lignocellulose breakdown in biorefineries is facilitated by enzymes and physical forces. Enzymes degrade and solubilize accessible lignocellulosic polymers, primarily on fiber surfaces, and make fibers physically weaker. Meanwhile physical forces acting during mechanical agitation induce tearing and cause rupture and attrition of the fibers, leading to liquefaction, that is, a less viscous hydrolysate that can be further processed in industrial settings.

View Article and Find Full Text PDF

Extractives found in the heartwood of a moderately durable conifer () were compared with those found in a non-durable one (). We identified and quantified heartwood extractives by extraction with solvents of different polarities and gas chromatography with mass spectral detection (GC-MS). Among the extracted compounds, there was a much higher amount of hydrophilic phenolics in larch (flavonoids) than in spruce (lignans).

View Article and Find Full Text PDF

Formation of extractive-rich heartwood is a process in live trees that make them and the wood obtained from them more resistant to fungal degradation. Despite the importance of this natural mechanism, little is known about the deposition pathways and cellular level distribution of extractives. Here we follow heartwood formation in var.

View Article and Find Full Text PDF

Briquetting of plant biomass with low bulk density is an advantage for handling, transport, and storage of the material, and heating of the biomass prior to the briquetting facilitates the densification process and improves the physical properties of the briquettes. This study investigates the effects of preheating prior to briquetting of wheat straw (WS) on subsequent hydrothermal pretreatment and enzymatic conversion to fermentable sugars. WS (11% moisture content) was densified to briquettes under different conditions; without preheating or with preheating at 75 or 125°C for either 5 or 10 min.

View Article and Find Full Text PDF

Background: To improve process economics for production of fuels and chemicals from lignocellulosic biomass, high solids concentrations are applied in enzymatic hydrolysis, to increase product concentration and reduce energy input. However, increasing solids concentrations decrease cellulose conversion yields, the so called 'high-solids effect.' Previous work suggests that product inhibition and mixing contribute, but an understanding of how biomass properties influence the high-solids effect, is lacking.

View Article and Find Full Text PDF

Enzymes and mechanics play major roles in lignocellulosic biomass deconstruction in biorefineries by catalyzing chemical cleavage or inducing physical breakdown of biomass, respectively. At industrially relevant substrate concentrations mechanical agitation is also a driving force for mass transfer as well as agglomeration of elongated biomass particles. Contrary to the physically induced particle attrition, which typically facilitates feedstock handling, particle agglomeration tends to hinder mass transfer and in the worst case induces processing difficulties like pipe blockage.

View Article and Find Full Text PDF

Background: Lignin is known to hinder efficient enzymatic conversion of lignocellulose in biorefining processes. In particular, nonproductive adsorption of cellulases onto lignin is considered a key mechanism to explain how lignin retards enzymatic cellulose conversion in extended reactions.

Results: Lignin-rich residues (LRRs) were prepared via extensive enzymatic cellulose degradation of corn stover ( subsp.

View Article and Find Full Text PDF

Objectives: The biochemical conversion of lignocellulosic biomass into renewable fuels and chemicals provides new challenges for industrial scale processes. One such process, which has received little attention, but is of great importance for efficient product recovery, is solid-liquid separations, which may occur both after pretreatment and after the enzymatic hydrolysis steps. Due to the changing nature of the solid biomass during processing, the solid-liquid separation properties of the biomass can also change.

View Article and Find Full Text PDF

Background: Understanding factors that govern lignocellulosic biomass recalcitrance is a prerequisite for designing efficient 2nd generation biorefining processes. However, the reasons and mechanisms responsible for quantitative differences in enzymatic digestibility of various biomass feedstocks in response to hydrothermal pretreatment at different severities are still not sufficiently understood.

Results: Potentially important lignocellulosic feedstocks for biorefining, corn stover ( subsp.

View Article and Find Full Text PDF

The underlying mechanisms of the recalcitrance of biomass to enzymatic deconstruction are still not fully understood, and this hampers the development of biomass based fuels and chemicals. With water being necessary for most biological processes, it is suggested that interactions between water and biomass may be key to understanding and controlling biomass recalcitrance. This study investigates the correlation between biomass recalcitrance and the constraint and retention of water by the biomass, using SO pretreated spruce, a common feedstock for lignocellulosic biofuel production, as a substrate to evaluate this relationship.

View Article and Find Full Text PDF

Binding of enzymes to the substrate is the first step in enzymatic hydrolysis of lignocellulose, a key process within biorefining. During this process elongated plant cells such as fibers and tracheids have been found to break into segments at irregular cell wall regions known as dislocations or slip planes. Here we study whether cellulases bind to dislocations to a higher extent than to the surrounding cell wall.

View Article and Find Full Text PDF